1
|
Olubamiwa AO, Ma J, Dehanne P, Noban C, Angın Y, Barberan O, Chen M. Drug metabolizing enzymes and transporters, and their roles for the development of drug-induced liver injury. Expert Opin Drug Metab Toxicol 2025:1-14. [PMID: 40488658 DOI: 10.1080/17425255.2025.2514537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 05/23/2025] [Indexed: 06/11/2025]
Abstract
INTRODUCTION Drug-induced liver injury (DILI) poses a significant challenge to drug development and human healthcare. The complex mechanisms underlying DILI make it challenging to accurately predict its occurrence, often leading to substantial financial losses from failed drug development projects and drug withdrawals. Growing evidence suggests that drug-metabolizing enzymes and transporters (DMETs) play a critical role in the development of DILI. AREAS COVERED In this review, we explore findings about the contributions of DMETs to DILI, with a focus on the studies examining genetic polymorphisms and their interactions with drugs. Additionally, we highlight the roles of DMETs in the development of predictive models for assessing DILI potential and in uncovering the mechanisms involved in DILI. EXPERT OPINION As new approach methods (NAMs) for assessing and predicting drug toxicity gain more prominence, it is imperative to better understand the adverse outcome pathways (AOPs) that underpin these methods. DMETs largely play a pivotal role in the molecular initiating events of DILI-related AOPs. Further research is needed to characterize DILI-related AOP networks and enhance the predictive performance of NAMs for assessing DILI risk.
Collapse
Affiliation(s)
- AyoOluwa O Olubamiwa
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Jingyi Ma
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Patrice Dehanne
- Life Sciences, Elsevier B.V Radarweg, Amsterdam, Netherlands
| | - Catherine Noban
- Life Sciences, Elsevier B.V Radarweg, Amsterdam, Netherlands
| | - Yeliz Angın
- Life Sciences, Elsevier B.V Radarweg, Amsterdam, Netherlands
| | | | - Minjun Chen
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
2
|
Clemens L, Battista C, Kenz ZR, Shoda LKM. A well-characterized mechanistic model for exploring known or hypothesized T cell mediated drug induced liver injury: current capabilities and challenges for future predictivity. Expert Opin Drug Metab Toxicol 2025; 21:717-727. [PMID: 40324052 DOI: 10.1080/17425255.2025.2499551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Drug-induced liver injury (DILI) is an adverse event whose emergence can slow or halt drug development programs. Adaptive immune responses have been implicated for several DILI compounds, and drug-specific T cell responses have been characterized, but there are still many unknowns. We describe the extension of a quantitative systems toxicology (QST) model of DILI to include CD8+ T cell-mediated DILI. RESEARCH DESIGN AND METHODS To overcome deficits in quantitative data characterizing CD8+ T cell-mediated DILI, a translational strategy leveraged a well-defined mouse ovalbumin (OVA) antigen model and adapted it to represent mouse amodiaquine (AQ)-specific CD8+ T cell-mediated DILI, with further adaptations to represent human AQ-specific CD8+ T cell-mediated DILI. RESULTS DILIsym reproduced published data characterizing mouse OVA-specific CD8+ T cell-mediated hepatotoxicity, mouse AQ-specific CD8+ T cell-mediated DILI, and human AQ-specific CD8+ T cell-mediated DILI. Development identified main drivers of the CD8+ T cell response, as well as areas where in vitro assay data could inform the simulation of additional compounds. CONCLUSIONS The DILIsym CD8+ T cell sub-model is well-positioned for systematic testing to improve our understanding of CD8+ T cell-mediated DILI. It is not yet predictive but indicates a promising direction to reduce DILI events in drug development.
Collapse
Affiliation(s)
- Lara Clemens
- QSP Solutions, Simulations Plus, Inc., Research Triangle Park, NC, USA
| | | | - Zackary R Kenz
- QSP Solutions, Simulations Plus, Inc., Research Triangle Park, NC, USA
| | - Lisl K M Shoda
- QSP Solutions, Simulations Plus, Inc., Research Triangle Park, NC, USA
| |
Collapse
|
3
|
Singh H, Kunkle BF, Troia AR, Suvarnakar AM, Waterman AC, Khin Y, Korkmaz SY, O'Connor CE, Lewis JH. Drug Induced Liver Injury: Highlights and Controversies in the 2023 Literature. Drug Saf 2025; 48:455-488. [PMID: 39921708 DOI: 10.1007/s40264-025-01514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 02/10/2025]
Abstract
Drug-induced liver injury (DILI) remains an active field of clinical research and investigation with more than 4700 publications appearing in 2023 relating to hepatotoxicity of all causes and injury patterns. As in years past, we have attempted to identify and summarize highlights and controversies from the past year's literature. Several new and novel therapeutic agents were approved by the US Food and Drug Administration (FDA) in 2023, a number of which were associated with significant hepatotoxicity. Updates in the diagnosis and management of DILI using causality scores as well as newer artificial intelligence-based methods were published. Details of newly established hepatotoxins as well as updated information on previously documented hepatotoxic drugs is presented. Significant updates in treatment of DILI were also included as well as reports related to global DILI registries.
Collapse
Affiliation(s)
- Harjit Singh
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA.
| | - Bryce F Kunkle
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Angela R Troia
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | | | - Ade C Waterman
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Yadana Khin
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Serena Y Korkmaz
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Corinne E O'Connor
- Department of Internal Medicine, Medstar Georgetown University Hospital, Washington, DC, USA
| | - James H Lewis
- Division of Gastroenterology and Hepatology, Medstar Georgetown University Hospital, Washington, DC, USA
| |
Collapse
|
4
|
Beaudoin JJ, Yang K, Howell BA, Kenz Z, Lakhani VV, Woodhead JL, Lai JCK, Gelotte CK, Sista S, Atillasoy E. Modeling and Simulation of Acetaminophen Pharmacokinetics and Hepatic Biomarkers After Overdoses of Extended-Release and Immediate-Release Formulations in Healthy Adults Using the Quantitative Systems Toxicology Software Platform DILIsym. CPT Pharmacometrics Syst Pharmacol 2025; 14:681-694. [PMID: 39899441 PMCID: PMC12001258 DOI: 10.1002/psp4.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 02/05/2025] Open
Abstract
Acetaminophen (APAP) has been formulated as immediate-, modified-, and extended-release tablets (APAP-IR, -MR, and -ER, respectively). However, there was concern that APAP-MR previously available in Europe could form a bezoar after a large overdose, leading to delayed absorption and atypical pharmacokinetics (PK) compared to APAP-IR, and that current treatment guidelines developed for APAP overdose to prevent severe hepatotoxicity are inappropriate for APAP-MR. In contrast, APAP-ER caplets available in the United States are designed with an IR layer and an erodible ER layer. Using modeling and simulation, predicted PK and hepatotoxicity biomarkers following various acute overdose and repeated supratherapeutic ingestion (RSTI) scenarios with APAP-IR and APAP-ER were compared to investigate the differences between these two formulations. The existing APAP-IR representation within DILIsym v8A, a quantitative systems toxicology model of drug-induced liver injury, was updated, and an APAP-ER model was developed, using newly acquired in vitro (e.g., tiny-TIMsg) and clinical data. The model and simulated populations (SimPops) representing healthy adults were extensively validated, before simulating PK and three clinically useful hepatic biomarkers after various overdose scenarios. On average, APAP exposure after acute overdose and RSTI in healthy adults was predicted to be slightly lower for APAP-ER compared to APAP-IR, partially due to lower APAP absorption for APAP-ER, while not markedly impacting the expected time course of APAP plasma concentrations. Similar hepatic biomarker profiles were predicted for both APAP formulations. Based on these results, the APAP overdose consensus treatment guidelines updated in 2023 are not further impacted by this report.
Collapse
Affiliation(s)
- James J. Beaudoin
- Quantitative Systems Pharmacology SolutionsSimulations Plus Inc.Research Triangle ParkNorth CarolinaUSA
| | - Kyunghee Yang
- Quantitative Systems Pharmacology SolutionsSimulations Plus Inc.Research Triangle ParkNorth CarolinaUSA
| | - Brett A. Howell
- Quantitative Systems Pharmacology SolutionsSimulations Plus Inc.Research Triangle ParkNorth CarolinaUSA
| | - Zackary Kenz
- Quantitative Systems Pharmacology SolutionsSimulations Plus Inc.Research Triangle ParkNorth CarolinaUSA
| | - Vinal V. Lakhani
- Quantitative Systems Pharmacology SolutionsSimulations Plus Inc.Research Triangle ParkNorth CarolinaUSA
| | - Jeffrey L. Woodhead
- Quantitative Systems Pharmacology SolutionsSimulations Plus Inc.Research Triangle ParkNorth CarolinaUSA
| | | | | | - Sury Sista
- Kenvue Inc.Montgomery TownshipNew JerseyUSA
| | | |
Collapse
|
6
|
Beers JL, Zhou Z, Jackson KD. Advances and Challenges in Modeling Cannabidiol Pharmacokinetics and Hepatotoxicity. Drug Metab Dispos 2024; 52:508-515. [PMID: 38286636 PMCID: PMC11114601 DOI: 10.1124/dmd.123.001435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024] Open
Abstract
Cannabidiol (CBD) is a pharmacologically active metabolite of cannabis that is US Food and Drug Administration approved to treat seizures associated with Lennox-Gastaut syndrome, Dravet syndrome, and tuberous sclerosis complex in children aged 1 year and older. During clinical trials, CBD caused dose-dependent hepatocellular toxicity at therapeutic doses. The risk for toxicity was increased in patients taking valproate, another hepatotoxic antiepileptic drug, through an unknown mechanism. With the growing popularity of CBD in the consumer market, an improved understanding of the safety risks associated with CBD is needed to ensure public health. This review details current efforts to describe CBD pharmacokinetics and mechanisms of hepatotoxicity using both pharmacokinetic models and in vitro models of the liver. In addition, current evidence and knowledge gaps related to intracellular mechanisms of CBD-induced hepatotoxicity are described. The authors propose future directions that combine systems-based models with markers of CBD-induced hepatotoxicity to understand how CBD pharmacokinetics may influence the adverse effect profile and risk of liver injury for those taking CBD. SIGNIFICANCE STATEMENT: This review describes current pharmacokinetic modeling approaches to capture the metabolic clearance and safety profile of cannabidiol (CBD). CBD is an increasingly popular natural product and US Food and Drug Administration-approved antiepileptic drug known to cause clinically significant enzyme-mediated drug interactions and hepatotoxicity at therapeutic doses. CBD metabolism, pharmacokinetics, and putative mechanisms of CBD-induced liver injury are summarized from available preclinical data to inform future modeling efforts for understanding CBD toxicity.
Collapse
Affiliation(s)
- Jessica L Beers
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.L.B., K.D.J.); and Department of Chemistry, York College, City University of New York, Jamaica, New York (Z.Z.)
| | - Zhu Zhou
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.L.B., K.D.J.); and Department of Chemistry, York College, City University of New York, Jamaica, New York (Z.Z.)
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.L.B., K.D.J.); and Department of Chemistry, York College, City University of New York, Jamaica, New York (Z.Z.)
| |
Collapse
|
7
|
Lucena MI, Villanueva-Paz M, Alvarez-Alvarez I, Aithal GP, Björnsson ES, Cakan-Akdogan G, Cubero FJ, Esteves F, Falcon-Perez JM, Fromenty B, Garcia-Ruiz C, Grove JI, Konu O, Kranendonk M, Kullak-Ublick GA, Miranda JP, Remesal-Doblado A, Sancho-Bru P, Nelson L, Andrade RJ, Daly AK, Fernandez-Checa JC. Roadmap to DILI research in Europe. A proposal from COST action ProEuroDILINet. Pharmacol Res 2024; 200:107046. [PMID: 38159783 PMCID: PMC7617395 DOI: 10.1016/j.phrs.2023.107046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
In the current article the aims for a constructive way forward in Drug-Induced Liver Injury (DILI) are to highlight the most important priorities in research and clinical science, therefore supporting a more informed, focused, and better funded future for European DILI research. This Roadmap aims to identify key challenges, define a shared vision across all stakeholders for the opportunities to overcome these challenges and propose a high-quality research program to achieve progress on the prediction, prevention, diagnosis and management of this condition and impact on healthcare practice in the field of DILI. This will involve 1. Creation of a database encompassing optimised case report form for prospectively identified DILI cases with well-characterised controls with competing diagnoses, biological samples, and imaging data; 2. Establishing of preclinical models to improve the assessment and prediction of hepatotoxicity in humans to guide future drug safety testing; 3. Emphasis on implementation science and 4. Enhanced collaboration between drug-developers, clinicians and regulatory scientists. This proposed operational framework will advance DILI research and may bring together basic, applied, translational and clinical research in DILI.
Collapse
Affiliation(s)
- M I Lucena
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Plataforma de Investigación Clínica y Ensayos Clínicos UICEC-IBIMA, Plataforma ISCIII de Investigación Clínica, Madrid, Spain.
| | - M Villanueva-Paz
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - I Alvarez-Alvarez
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - G P Aithal
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
| | - E S Björnsson
- Faculty of Medicine, University of Iceland, Department of Gastroenterology and Hepatology, Landspitali University Hospital, Reykjavik, Iceland
| | - G Cakan-Akdogan
- Izmir Biomedicine and Genome Center, Izmir, Turkey. Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - F J Cubero
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Department of Immunology, Ophthalmology and ORL, Complutense University School of Medicine, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - F Esteves
- Center for Toxicogenomics and Human Health (ToxOmics), NMS | FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - J M Falcon-Perez
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain. IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia 48009, Spain
| | - B Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, F-35000 Rennes, France
| | - C Garcia-Ruiz
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. University of Barcelona, Barcelona, Spain; Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain
| | - J I Grove
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
| | - O Konu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - M Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), NMS | FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - G A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland
| | - J P Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - A Remesal-Doblado
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain
| | - P Sancho-Bru
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. University of Barcelona, Barcelona, Spain
| | - L Nelson
- Institute for Bioengineering, School of Engineering, Faraday Building, The University of Edinburgh, Scotland, UK
| | - R J Andrade
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - A K Daly
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - J C Fernandez-Checa
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. University of Barcelona, Barcelona, Spain; Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|