1
|
Yang Y, Shi J, Liu C, Liu Q, Yang J, Tong X, Lu J, Wu J. Engineered Polymeric Carbon Nitride for Photocatalytic Diverse Functionalization of Electronic-Rich Alkenes. Angew Chem Int Ed Engl 2025; 64:e202417099. [PMID: 39582385 DOI: 10.1002/anie.202417099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Accepted: 11/24/2024] [Indexed: 11/26/2024]
Abstract
Engineered polymeric carbon nitride represents a promising class of metal-free semiconductor photocatalysts for organic synthesis. Herein, we utilized engineered polymeric carbon nitride nanosheets, which exhibit an increased specific surface area and band gap due to enhanced quantum confinement from vacancy enrichment. These nanosheets serve as a heterogeneous organic semiconductor photocatalyst to facilitate diverse functionalizations of electron-rich alkenes, including arylsulfonylation, aminodifluoroalkylation, and oxytrifluoromethylation. This catalytic system operates under mild conditions, offering excellent functional group compatibility and high yields. Additionally, the catalyst demonstrates outstanding recyclability and efficiency in flow reactors, highlighting its significant potential for industrial applications.
Collapse
Affiliation(s)
- Youqing Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Key Laboratory of Synthetic Chemistry and Applications, Huaibei Normal University, Huaibei, Anhui, 235000, P.R. China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Jiwei Shi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
- Tianjin University International Campus of, Tianjin University Binhai New City, Fuzhou, 350207, P. R. China
| | - Chenguang Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Qiong Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
- Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou, 510070, P. R. China
| | - Jian Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Xiaogang Tong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| |
Collapse
|
2
|
Duan Y, Zhang K, Xing T, Bai Y, Li J, Yang X, Zhao Y, Zhang Q. Metal-free photoinduced generation and alkynylation of carbamoyl radicals: a facile synthesis of alkynyl amides. Chem Commun (Camb) 2024; 60:9582-9585. [PMID: 39140217 DOI: 10.1039/d4cc01619j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
A metal-free photoinduced alkynylation of carbamoyl radicals with hypervalent iodine(III) reagents for a facile synthesis of alkynyl amides is described. This protocol features good functional group tolerance and a broad substrate scope for direct synthesis of alkynyl amide derivatives in good to excellent yields under mild and redox-neutral reaction conditions. The synthetic application is demonstrated by the late-stage installation of alkynyl amides into natural products and active pharmaceutical relevant molecules. The mechanistic studies indicated the simultaneous existence of photoredox catalytic and direct photoexcited processes, and the quantum yields confirmed the occurrence of the radical chain propagation process.
Collapse
Affiliation(s)
- Yurong Duan
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China.
| | - Kai Zhang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Tongtong Xing
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China.
| | - Yubin Bai
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China.
| | - Jinfeng Li
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China.
| | - Xiaojun Yang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China.
| | - Yu Zhao
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China.
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Qiuyu Zhang
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
3
|
Yang S, He M, Wang Y, Bao M, Yu X. Visible-light-induced iron-catalyzed reduction of nitroarenes to anilines. Chem Commun (Camb) 2023; 59:14177-14180. [PMID: 37961762 DOI: 10.1039/d3cc04324j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
An efficient visible-light-induced iron-catalyzed reduction of nitroarenes to anilines by using N-ethylmorpholine (NEM) as a reductant under mild conditions has been developed. The reaction proceeds with photosensitizer-free conditions and features good to excellent yields and broad functional group tolerance. Preliminary mechanistic investigations showed that this reaction was conducted via ligand-to-metal (NEM to Fe3+) charge transfer and nitro triplet biradical-induced hydrogen atom transfer processes.
Collapse
Affiliation(s)
- Shilei Yang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.
| | - Min He
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yi Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
4
|
Abstract
The first vinylogous dearomatization is reported. Under a photoinduced platform, various benzothiophenes functionalized by ketones at the 3-position could react with 3-methylenechroman-4-ones efficiently, leading to a variety of valuable products that contain the pharmaceutically significant chromones and 2,3-dihydrobenzo[b]thiophenes concurrently. The transformations were revealed to experience hydrogen-atom transfer, dearomatization, olefin migration, and radical cross coupling.
Collapse
Affiliation(s)
- Xinxin Lv
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University; Pingyuan Laboratory, Xinxiang 453007, Henan, P. R. China
| | - Ya-Nan Qi
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University; Pingyuan Laboratory, Xinxiang 453007, Henan, P. R. China
| | - Jiahao Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University; Pingyuan Laboratory, Xinxiang 453007, Henan, P. R. China
| | - Xiaowei Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Zhiyong Jiang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University; Pingyuan Laboratory, Xinxiang 453007, Henan, P. R. China
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| |
Collapse
|
5
|
Zhu Y, Huang HY, He YQ, Wang M, Wang XY, Song XR, Mao ZJ, Tian WF, Xiao Q. Visible-light enabled photochemical reduction of 1,2-dicarbonyl compounds by Hünig's base. Org Chem Front 2022. [DOI: 10.1039/d1qo01841h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light enabled, chemoselective photoreduction of 1,2-dicarbonyl compounds by using Hünig's base as reductant is reported.
Collapse
Affiliation(s)
- Yao Zhu
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Hai-Yang Huang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Yong-Qin He
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, P. R. China
| | - Mei Wang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Xiao-Yu Wang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Xian-Rong Song
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Zhi-Jie Mao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Wan-Fa Tian
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| |
Collapse
|
6
|
Wang S, König B. Katalytische Erzeugung von Carbanionen durch Carbonyl‐Umpolung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shun Wang
- Fakultät für Chemie und Pharmazie Universität Regensburg Universitätsstraße 31 93053 Regensburg Deutschland
| | - Burkhard König
- Fakultät für Chemie und Pharmazie Universität Regensburg Universitätsstraße 31 93053 Regensburg Deutschland
| |
Collapse
|
7
|
Sun R, Yang X, Ge Y, Song J, Zheng X, Yuan M, Li R, Chen H, Fu H. Visible-Light-Induced Oxazoline Formations from N-Vinyl Amides Catalyzed by an Ion-Pair Charge-Transfer Complex. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rui Sun
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xiao Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Yicen Ge
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, No.1 3rd Road, Erxian Bridge East, Chengdu, Sichuan 610059, P. R. China
| | - Jintong Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xueli Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Maolin Yuan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Ruixiang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
8
|
Wang S, König B. Catalytic Generation of Carbanions through Carbonyl Umpolung. Angew Chem Int Ed Engl 2021; 60:21624-21634. [PMID: 33991000 PMCID: PMC8518712 DOI: 10.1002/anie.202105469] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 12/16/2022]
Abstract
Carbonyl Umpolung is a powerful strategy in organic chemistry to construct complex molecules. Over the last few years, versatile catalytic approaches for the generation of acyl anion equivalents from carbonyl compounds have been developed, but methods to obtain alkyl carbanions from carbonyl compounds in a catalytic fashion are still at an early stage. This Minireview summarizes recent progress in the generation of alkyl carbanions through catalytic carbonyl Umpolung. Two different catalytic approaches can be utilized to enable the generation of alkyl carbanions from carbonyl compounds: the catalytic Wolff–Kishner reaction and the catalytic single‐electron reduction of carbonyl compounds and imines. We discuss the reaction scope, mechanistic insights, and synthetic applications of the methods as well as potential future developments.
Collapse
Affiliation(s)
- Shun Wang
- Faculty of Chemistry and Pharmacy University of Regensburg Universitaetsstrasse 31 93053 Regensburg Germany
| | - Burkhard König
- Faculty of Chemistry and Pharmacy University of Regensburg Universitaetsstrasse 31 93053 Regensburg Germany
| |
Collapse
|
9
|
Jia H, Qiao B, Jiang Z. Photoredox Catalytic Radical Coupling to Access β-Fluoro α-Amino Acid Derivatives. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21090432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Lv X, Xu H, Yin Y, Zhao X, Jiang Z. Visible
Light‐Driven
Cooperative
DPZ
and Chiral
Hydrogen‐Bonding
Catalysis. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000306] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xinxin Lv
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Hehuan Xu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Yanli Yin
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Xiaowei Zhao
- College of Pharmacy, Henan University, Jinming Campus Kaifeng Henan 475004 China
| | - Zhiyong Jiang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
- College of Pharmacy, Henan University, Jinming Campus Kaifeng Henan 475004 China
| |
Collapse
|
11
|
Yin Y, Zhao X, Jiang Z. Advances in the Synthesis of Imine‐Containing Azaarene Derivatives via Photoredox Catalysis. ChemCatChem 2020. [DOI: 10.1002/cctc.202000741] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yanli Yin
- College of Bioengineering Henan University of Technology Zhengzhou Henan 450001 P. R. China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Xiaowei Zhao
- College of Pharmacy Henan University Kaifeng Henan 475004 P. R. China
| | - Zhiyong Jiang
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
12
|
Glaser F, Larsen CB, Kerzig C, Wenger OS. Aryl dechlorination and defluorination with an organic super-photoreductant. Photochem Photobiol Sci 2020; 19:1035-1041. [PMID: 32588869 DOI: 10.1039/d0pp00127a] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Direct excitation of the commercially available super-electron donor tetrakis(dimethylamino)ethylene (TDAE) with light-emitting diodes at 440 or 390 nm provides a stoichiometric reductant that is able to reduce aryl chlorides and fluorides. The method is very simple and requires only TDAE, substrate, and solvent at room temperature. The photoactive excited state of TDAE has a lifetime of 17.3 ns in cyclohexane at room temperature and an oxidation potential of ca.-3.4 V vs. SCE. This makes TDAE one of the strongest photoreductants able to operate on the basis of single excitation with visible photons. Direct substrate activation occurs in benzene, but acetone is reduced by photoexcited TDAE and substrate reduction takes place by a previously unexplored solvent radical anion mechanism. Our work shows that solvent can have a leveling effect on the photochemically available redox power, reminiscent of the pH-leveling effect that solvent has in acid-base chemistry.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Christopher B Larsen
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Christoph Kerzig
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland.
| |
Collapse
|
13
|
Pan S, Jiang M, Zhong G, Dai L, Zhou Y, Wei K, Zeng X. Visible-light-induced selectivity controllable synthesis of diamine or imidazoline derivatives by multicomponent decarboxylative radical coupling reactions. Org Chem Front 2020. [DOI: 10.1039/d0qo01028f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A visible-light-induced and photoredox-catalyzed three-component selectivity controllable synthesis of vicinal diamines and imidazoles from readily available starting materials under mild reaction conditions has been realized.
Collapse
Affiliation(s)
- Shulei Pan
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Min Jiang
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Guofu Zhong
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Linlong Dai
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Yu Zhou
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Kaihang Wei
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Xiaofei Zeng
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| |
Collapse
|
14
|
Yin Y, Zhao X, Qiao B, Jiang Z. Cooperative photoredox and chiral hydrogen-bonding catalysis. Org Chem Front 2020. [DOI: 10.1039/d0qo00276c] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chiral hydrogen-bonding catalysis is a classic strategy in asymmetric organocatalysis. Recently, it has been used to cooperate with photoredox catalysis, becoming a powerful tool to access optical pure compounds via radical-based transformations.
Collapse
Affiliation(s)
- Yanli Yin
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
- College of Bioengineering
| | - Xiaowei Zhao
- Henan University
- Jinming Campus
- Kaifeng
- P. R. China
| | - Baokun Qiao
- Henan University
- Jinming Campus
- Kaifeng
- P. R. China
| | - Zhiyong Jiang
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
- Henan University
| |
Collapse
|
15
|
Schlosser J, Cibulka R, Groß P, Ihmels H, Mohrschladt CJ. Visible‐Light‐Induced Di‐π‐Methane Rearrangement of Dibenzobarrelene Derivatives. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Julika Schlosser
- Department of Chemistry-BiologyUniversity of Siegen Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Radek Cibulka
- Department of Organic ChemistryUniversity of Chemistry and Technology, Prague Technická 5 16628 Prague Czech Republic
| | - Philipp Groß
- Department of Chemistry-BiologyUniversity of Siegen Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Heiko Ihmels
- Department of Chemistry-BiologyUniversity of Siegen Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | | |
Collapse
|
16
|
Chatterjee A, König B. Birch-Type Photoreduction of Arenes and Heteroarenes by Sensitized Electron Transfer. Angew Chem Int Ed Engl 2019; 58:14289-14294. [PMID: 31379035 PMCID: PMC6790943 DOI: 10.1002/anie.201905485] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/30/2019] [Indexed: 01/09/2023]
Abstract
The direct reduction of arenes and heteroarenes by visible-light irradiation remains challenging, as the energy of a single photon is not sufficient for breaking aromatic stabilization. Shown herein is that the energy accumulation of two visible-light photons allows the dearomatization of arenes and heteroarenes. Mechanistic investigations confirm that the combination of energy-transfer and electron-transfer processes generates an arene radical anion, which is subsequently trapped by hydrogen-atom transfer and finally protonated to form the dearomatized product. The photoreduction converts planar aromatic feedstock compounds into molecular skeletons that are of use in organic synthesis.
Collapse
Affiliation(s)
- Anamitra Chatterjee
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Burkhard König
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| |
Collapse
|
17
|
Chatterjee A, König B. Birch‐Type Photoreduction of Arenes and Heteroarenes by Sensitized Electron Transfer. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905485] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Anamitra Chatterjee
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Germany
| | - Burkhard König
- Universität Regensburg Fakultät für Chemie und Pharmazie 93040 Regensburg Germany
| |
Collapse
|
18
|
Hou M, Lin L, Chai X, Zhao X, Qiao B, Jiang Z. Enantioselective photoredox dehalogenative protonation. Chem Sci 2019; 10:6629-6634. [PMID: 31367315 PMCID: PMC6625487 DOI: 10.1039/c9sc02000d] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
We report an enantioselective photoredox dehalogenative protonation as a new type of asymmetric protonation. As a paradigm, with a cooperative catalytic system consisting of a chiral H-bonding catalyst and a dicyanopyrazine-derived chromophore (DPZ) photosensitizer that is irradiated with visible light, a range of cyclic and acyclic ketones with labile chiral secondary C-F, C-Cl and C-Br bonds at the α-position were obtained in high yields with good to excellent enantioselectivities (up to >99% ee) by using a secondary amine as the terminal reductant. Given the ready accessibility of halides, the success of this work should provide inspiration for constructing diverse chiral α-tertiary carbonyls and their variants.
Collapse
Affiliation(s)
- Meimei Hou
- Henan University , Jinming Campus , Kaifeng , Henan 475004 , China . ;
| | - Lu Lin
- Henan University , Jinming Campus , Kaifeng , Henan 475004 , China . ;
| | - Xiangpei Chai
- Henan University , Jinming Campus , Kaifeng , Henan 475004 , China . ;
| | - Xiaowei Zhao
- Henan University , Jinming Campus , Kaifeng , Henan 475004 , China . ;
| | - Baokun Qiao
- Henan University , Jinming Campus , Kaifeng , Henan 475004 , China . ;
| | - Zhiyong Jiang
- Henan University , Jinming Campus , Kaifeng , Henan 475004 , China . ;
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , Key Laboratory of Green Chemical Media and Reactions , Ministry of Education , Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals , School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| |
Collapse
|
19
|
Li L, Ma Y, Tang M, Guo J, Yang Z, Yan Y, Ma X, Tang L. Photoredox‐Catalyzed Oxydifluoroalkylation of Styrenes for Access to Difluorinated Ketones with DMSO as an Oxidant. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900521] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lixin Li
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 People's Republic of China
| | - Yan‐Na Ma
- College of Chemistry and Chemical EngineeringHenan Normal University Xinxiang 453000 People's Republic of China
| | - Mi Tang
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 People's Republic of China
| | - Jing Guo
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 People's Republic of China
| | - Zhen Yang
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 People's Republic of China
| | - Yizhe Yan
- School of Food and Biological EngineeringZhengzhou University of Light Industry Zhengzhou 450000 People's Republic of China
| | - Xiantao Ma
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 People's Republic of China
| | - Lin Tang
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 People's Republic of China
| |
Collapse
|
20
|
Jia WG, Cheng MX, Gao LL, Tan SM, Wang C, Liu X, Lee R. A ruthenium bisoxazoline complex as a photoredox catalyst for nitro compound reduction under visible light. Dalton Trans 2019; 48:9949-9953. [PMID: 31237588 DOI: 10.1039/c9dt00428a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An unreported ruthenium(ii) complex containing bisoxazoline ligands has been synthesized and characterized. To test the catalytic ability of the ruthenium complex, the synthesis of anilines from nitro compounds in the presence of a mild reducing agent sodium borohydride and visible light has been developed. Mechanistic studies involving the experiment and DFT calculations suggest that the reaction could involve a radical pathway with the assistance of a photoredox catalyst.
Collapse
Affiliation(s)
- Wei-Guo Jia
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Ming-Xia Cheng
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Li-Li Gao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Siu Min Tan
- Science and Mathematics Cluster, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372.
| | - Chao Wang
- Science and Mathematics Cluster, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372.
| | - Xiaogang Liu
- Science and Mathematics Cluster, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372.
| | - Richmond Lee
- Science and Mathematics Cluster, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372.
| |
Collapse
|
21
|
Tan F, Tang K, Zhang P, Guo Y, Qu M, Li Y. Utilization of a Hydrogen Source from Renewable Lignocellulosic Biomass for Hydrogenation of Nitroarenes. ChemCatChem 2019. [DOI: 10.1002/cctc.201900087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Fang‐Fang Tan
- Center for Organic Chemistry of Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong University Shaanxi 710054 China
| | - Kai‐Li Tang
- Center for Organic Chemistry of Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong University Shaanxi 710054 China
- College of Chemistry and Chemical EngineeringXi'an University of Science and Technology Xi'an Shaanxi 710054 China
| | - Ping Zhang
- Center for Organic Chemistry of Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong University Shaanxi 710054 China
- College of Chemistry and Chemical EngineeringXianyang Normal University Xianyang Shaanxi 712000 China
| | - Yan‐Jun Guo
- Center for Organic Chemistry of Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong University Shaanxi 710054 China
| | - Mengnan Qu
- College of Chemistry and Chemical EngineeringXi'an University of Science and Technology Xi'an Shaanxi 710054 China
| | - Yang Li
- Center for Organic Chemistry of Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong University Shaanxi 710054 China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 China
| |
Collapse
|
22
|
Liu X, Yin Y, Jiang Z. Photoredox-catalysed formal [3+2] cycloaddition of N-aryl α-amino acids with isoquinoline N-oxides. Chem Commun (Camb) 2019; 55:11527-11530. [DOI: 10.1039/c9cc06249a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work realizes a new synthetic utility of N-aryl α-amino acids as a 1,2-synthon, a new strategy to achieve dearomatization of isoquinolines, and the synthesis of valuable diazabicyclo[3.2.1]octane-based compounds.
Collapse
Affiliation(s)
- Xiangyuan Liu
- College of Bioengineering
- Henan University of Technology
- Zhengzhou
- P. R. China
- Henan University
| | - Yanli Yin
- College of Bioengineering
- Henan University of Technology
- Zhengzhou
- P. R. China
| | - Zhiyong Jiang
- Henan University
- Kaifeng
- P. R. China
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- School of Chemistry and Chemical Engineering
| |
Collapse
|
23
|
Zeng G, Li Y, Qiao B, Zhao X, Jiang Z. Photoredox asymmetric catalytic enantioconvergent substitution of 3-chlorooxindoles. Chem Commun (Camb) 2019; 55:11362-11365. [DOI: 10.1039/c9cc05304b] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An enantioconvergent substitution of 3-substituted 3-chlorooxindoles with N-aryl glycines under visible light irradiation is reported.
Collapse
Affiliation(s)
- Guangkuo Zeng
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province
- Henan University
- Jinming Campus
- Kaifeng
- P. R. China
| | - Yunqiang Li
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province
- Henan University
- Jinming Campus
- Kaifeng
- P. R. China
| | - Baokun Qiao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province
- Henan University
- Jinming Campus
- Kaifeng
- P. R. China
| | - Xiaowei Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province
- Henan University
- Jinming Campus
- Kaifeng
- P. R. China
| | - Zhiyong Jiang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province
- Henan University
- Jinming Campus
- Kaifeng
- P. R. China
| |
Collapse
|