1
|
Baluchová S, Zoltowska S, Giusto P, Kumru B. Binaphthyl Mediated Low Temperature Synthesis of Carbon Nitride Photocatalyst for Photocatalytic Hydrogen Evolution. CHEMSUSCHEM 2024; 17:e202400618. [PMID: 38837891 PMCID: PMC11587680 DOI: 10.1002/cssc.202400618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Metal-free graphitic carbon nitrides are on the rise as polymer photocatalysts under visible light illumination, taking shares in a range of promising photocatalytic reactions, including water splitting. Their simple synthesis and facile structural modification afford them exceptional tunability, enabling the creation of photocatalysts with distinct properties. While their metal-free nature marks a significant step towards environmental sustainability, the high energy consumption required to produce carbon nitride photocatalysts remains a substantial barrier to their widespread adoption. Furthermore, the process of condensation at approximately 550 °C typically results in solid yields of less than 15 %, significantly challenging their economic viability. Here, we report on lowering manufacturing conditions of carbon nitride photocatalysts whilst enhancing photocatalytic activity by introducing binaphthyl diamine as a structural mediator. At 450 °C in 2 hours, carbon nitride photocatalyst shows a lower bandgap and enables visible light induced hydrogen evolution (194 μmol h-1) comparable to benchmark carbon nitride photocatalysts.
Collapse
Affiliation(s)
- Simona Baluchová
- Department of Analytical ChemistryFaculty of ScienceCharles UniversityAlbertov 6Prague 2CZ 128 00Czech Republic
| | - Sonia Zoltowska
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Paolo Giusto
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Baris Kumru
- Aerospace Structures & Materials DepartmentFaculty of Aerospace EngineeringDelft University of Technology2629HS DelftThe Netherlands
| |
Collapse
|
2
|
Luo X, Zhai Y, Wang P, Tian B, Liu S, Li J, Yang C, Strehmel V, Li S, Matyjaszewski K, Yilmaz G, Strehmel B, Chen Z. Light-Mediated Polymerization Catalyzed by Carbon Nanomaterials. Angew Chem Int Ed Engl 2024; 63:e202316431. [PMID: 38012084 DOI: 10.1002/anie.202316431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Carbon nanomaterials, specifically carbon dots and carbon nitrides, play a crucial role as heterogeneous photoinitiators in both radical and cationic polymerization processes. These recently introduced materials offer promising solutions to the limitations of current homogeneous systems, presenting a novel approach to photopolymerization. This review highlights the preparation and photocatalytic performance of these nanomaterials, emphasizing their application in various polymerization techniques, including photoinduced i) free radical, ii) RAFT, iii) ATRP, and iv) cationic photopolymerization. Additionally, it discusses their potential in addressing contemporary challenges and explores prospects in this field. Moreover, carbon nitrides, in particular, exhibit exceptional oxygen tolerance, underscoring their significance in radical polymerization processes and allowing their applications such as 3D printing, surface modification of coatings, and hydrogel engineering.
Collapse
Affiliation(s)
- Xiongfei Luo
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
- Northeast Forestry University, College of Chemistry, Chemical Engineering and Resource Utilization, Hexing Road 26, Harbin, 150040, China
| | - Yingxiang Zhai
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Ping Wang
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Bing Tian
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Jian Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Chenhui Yang
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Veronika Strehmel
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Shujun Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA-15213, USA
| | - Gorkem Yilmaz
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA-15213, USA
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Bernd Strehmel
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| |
Collapse
|
3
|
Eren EO, Esen C, Scoppola E, Song Z, Senokos E, Zschiesche H, Cruz D, Lauermann I, Tarakina NV, Kumru B, Antonietti M, Giusto P. Microporous Sulfur-Carbon Materials with Extended Sodium Storage Window. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310196. [PMID: 38350734 DOI: 10.1002/advs.202310196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Indexed: 02/15/2024]
Abstract
Developing high-performance carbonaceous anode materials for sodium-ion batteries (SIBs) is still a grand quest for a more sustainable future of energy storage. Introducing sulfur within a carbon framework is one of the most promising attempts toward the development of highly efficient anode materials. Herein, a microporous sulfur-rich carbon anode obtained from a liquid sulfur-containing oligomer is introduced. The sodium storage mechanism shifts from surface-controlled to diffusion-controlled at higher synthesis temperatures. The different storage mechanisms and electrode performances are found to be independent of the bare electrode material's interplanar spacing. Therefore, these differences are attributed to an increased microporosity and a thiophene-rich chemical environment. The combination of these properties enables extending the plateau region to higher potential and achieving reversible overpotential sodium storage. Moreover, in-operando small-angle X-ray scattering (SAXS) reveals reversible electron density variations within the pore structure, in good agreement with the pore-filling sodium storage mechanism occurring in hard carbons (HCs). Eventually, the depicted framework will enable the design of high-performance anode materials for sodium-ion batteries with competitive energy density.
Collapse
Affiliation(s)
- Enis Oğuzhan Eren
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Cansu Esen
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Ernesto Scoppola
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Zihan Song
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Evgeny Senokos
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Hannes Zschiesche
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Daniel Cruz
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck Gesellschaft, 14195, Berlin, Germany
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
| | - Iver Lauermann
- PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie, 12489, Berlin, Germany
| | - Nadezda V Tarakina
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Barış Kumru
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
- Aerospace Structures and Materials Department, Faculty of Aerospace Engineering, Delft University of Technology, Delft, 2629 HS, The Netherlands
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Paolo Giusto
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| |
Collapse
|
4
|
Narayanasamy K, Peethambaram P, Roy D, Sivaperumal U, Kannaiyan D. Enhanced thermal and dielectric properties of porous thin films of graphene, conjugated terpolymer of pyrene/thiophene/heptaldehyde, and polyvinylidene difluoride alloys. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2022. [DOI: 10.1080/1023666x.2022.2158581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | - Debmalya Roy
- Directorate of Nanomaterials and Technologies, DMSRDE, Kanpur, India
| | - Uthayakumar Sivaperumal
- School of Engineering, Physical and Mathematical Sciences, Royal Holloway University of London, Surrey, UK
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Didcot, UK
| | | |
Collapse
|
6
|
Esen C, Kumru B. Thiol-ene polymer beads via liquid-liquid printing: armored interfaces and photopolymerization via graphitic carbon nitride. NANOSCALE ADVANCES 2022; 4:3136-3141. [PMID: 36132808 PMCID: PMC9418565 DOI: 10.1039/d2na00254j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/23/2022] [Indexed: 06/16/2023]
Abstract
Polymerization of multifunctional thiol-ene molecules is attractive as a proof of concept in photopolymerization, yet the formation of a bead structure is highly restricted. This manuscript will show graphitic carbon nitride based liquid-liquid printing and subsequent photopolymerization to form thiol-ene polymer beads with extreme simplicity and potential scalability.
Collapse
Affiliation(s)
- Cansu Esen
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry Am Mühlenberg 1 14424 Potsdam Germany
| | - Baris Kumru
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry Am Mühlenberg 1 14424 Potsdam Germany
- Delft University of Technology, Faculty of Aerospace Engineering, Department of Aerospace Structures and Materials Kluyverweg 1 2629 HS Delft Netherlands
| |
Collapse
|