1
|
Lecchini-Visintini A, Zwanenburg JJM, Wen Q, Nicholls JK, Desmidt T, Catheline S, Minhas JS, Robba C, Dvoriashyna M, Vallet A, Bamber J, Kurt M, Chung EML, Holdsworth S, Payne SJ. The pulsing brain: state of the art and an interdisciplinary perspective. Interface Focus 2025; 15:20240058. [PMID: 40191028 PMCID: PMC11969196 DOI: 10.1098/rsfs.2024.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Understanding the pulsing dynamics of tissue and fluids in the intracranial environment is an evolving research theme aimed at gaining new insights into brain physiology and disease progression. This article provides an overview of related research in magnetic resonance imaging, ultrasound medical diagnostics and mathematical modelling of biological tissues and fluids. It highlights recent developments, illustrates current research goals and emphasizes the importance of collaboration between these fields.
Collapse
Affiliation(s)
| | - Jacobus J. M. Zwanenburg
- Translational Neuroimaging Group, Center for Image Sciences, UMC Utrecht, Utrecht, The Netherlands
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jennifer K. Nicholls
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | | | | | - Jatinder S. Minhas
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnosis, University of Genoa, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| | - Mariia Dvoriashyna
- School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh, UK
| | - Alexandra Vallet
- Ecole nationale supérieure des Mines de Saint-Étienne, INSERM U 1059 Sainbiose, Saint-Étienne, France
| | - Jeffrey Bamber
- Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Mehmet Kurt
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Emma M. L. Chung
- School of Life Course and Population Sciences, King's College London, London, UK
| | - Samantha Holdsworth
- Mātai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
- Faculty of Medical and Health Sciences & Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Stephen J. Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Neher CM, Triolo E, RezayAraghi F, Khegai O, Balchandani P, McGarry M, Kurt M. Perfusion-mechanics coupling of the hippocampus. Interface Focus 2025; 15:20240051. [PMID: 40191030 PMCID: PMC11969186 DOI: 10.1098/rsfs.2024.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/27/2025] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
The hippocampus is a highly scrutinized brain structure due to its entanglement in multiple neuropathologies and vulnerability to metabolic insults. This study aims to non-invasively assess the perfusion-mechanics relationship of the hippocampus in the healthy brain across magnetic resonance imaging sequences and magnetic field strengths. In total, 17 subjects (aged 22-35, 7 males/10 females) were scanned with magnetic resonance elastography and arterial spin labelling acquisitions at 3T and 7T in a baseline physiological state. No significant differences in perfusion or stiffness were observed across magnetic field strengths or acquisitions. The hippocampus had the highest vascularity within the deep grey matter, followed closely by the caudate nucleus and putamen. We discovered a positive perfusion-mechanics correlation in the hippocampus across both 3T and 7T groups, with a highly significant correlation overall (R = 0.71, p = 0.0019), which was not observed in the caudate nucleus, a similarly vascular region. Furthermore, we supported our hypothesis that increased perfusion in the hippocampus would lead to greater pulsatile displacement in a small cohort (n = 10). Given that the hippocampus is an exceptionally vulnerable structure, with perfusion deficits often seen in diseases related to learning and memory, our results suggest a unique mechanistic link between metabolic health and stiffness biomarkers in this key region for the first time.
Collapse
Affiliation(s)
| | - Em Triolo
- University of Washington, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
3
|
Meyer T, Castelein J, Schattenfroh J, Sophie Morr A, Vieira da Silva R, Tzschätzsch H, Reiter R, Guo J, Sack I. Magnetic resonance elastography in a nutshell: Tomographic imaging of soft tissue viscoelasticity for detecting and staging disease with a focus on inflammation. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:1-14. [PMID: 39645347 DOI: 10.1016/j.pnmrs.2024.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 12/09/2024]
Abstract
Magnetic resonance elastography (MRE) is an emerging clinical imaging modality for characterizing the viscoelastic properties of soft biological tissues. MRE shows great promise in the noninvasive diagnosis of various diseases, especially those associated with soft tissue changes involving the extracellular matrix, cell density, or fluid turnover including altered blood perfusion - all hallmarks of inflammation from early events to cancer development. This review covers the fundamental principles of measuring tissue viscoelasticity by MRE, which are based on the stimulation and encoding of shear waves and their conversion into parameter maps of mechanical properties by inverse problem solutions of the wave equation. Technical challenges posed by real-world biological tissue properties such as viscosity, heterogeneity, anisotropy, and nonlinear elastic behavior of tissues are discussed. Applications of MRE measurement in both humans and animal models are presented, with emphasis on the detection, characterization, and staging of diseases related to the cascade of biomechanical property changes from early to chronic inflammation in the liver and brain. Overall, MRE provides valuable insights into the biophysics of soft tissues for imaging-based detection and staging of inflammation-associated tissue changes.
Collapse
Affiliation(s)
- Tom Meyer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Johannes Castelein
- Department of Radiology & Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Netherlands; Department for Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | - Anna Sophie Morr
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Rafaela Vieira da Silva
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Germany
| | - Heiko Tzschätzsch
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Germany
| | - Rolf Reiter
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Jing Guo
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
4
|
Triolo E, Khegai O, McGarry M, Lam T, Veraart J, Alipour A, Balchandani P, Kurt M. Characterizing brain mechanics through 7 tesla magnetic resonance elastography. Phys Med Biol 2024; 69:205011. [PMID: 39321962 DOI: 10.1088/1361-6560/ad7fc9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Magnetic resonance elastography (MRE) is a non-invasive method for determining the mechanical response of tissues using applied harmonic deformation and motion-sensitive MRI. MRE studies of the human brain are typically performed at conventional field strengths, with a few attempts at the ultra-high field strength, 7T, reporting increased spatial resolution with partial brain coverage. Achieving high-resolution human brain scans using 7T MRE presents unique challenges of decreased octahedral shear strain-based signal-to-noise ratio (OSS-SNR) and lower shear wave motion sensitivity. In this study, we establish high resolution MRE at 7T with a custom 2D multi-slice single-shot spin-echo echo-planar imaging sequence, using the Gadgetron advanced image reconstruction framework, applying Marchenko-Pastur Principal component analysis denoising, and using nonlinear viscoelastic inversion. These techniques allowed us to calculate the viscoelastic properties of the whole human brain at 1.1 mm isotropic imaging resolution with high OSS-SNR and repeatability. Using phantom models and 7T MRE data of eighteen healthy volunteers, we demonstrate the robustness and accuracy of our method at high-resolution while quantifying the feasible tradeoff between resolution, OSS-SNR, and scan time. Using these post-processing techniques, we significantly increased OSS-SNR at 1.1 mm resolution with whole-brain coverage by approximately 4-fold and generated elastograms with high anatomical detail. Performing high-resolution MRE at 7T on the human brain can provide information on different substructures within brain tissue based on their mechanical properties, which can then be used to diagnose pathologies (e.g. Alzheimer's disease), indicate disease progression, or better investigate neurodegeneration effects or other relevant brain disorders,in vivo.
Collapse
Affiliation(s)
- Emily Triolo
- Department Mechanical Engineering, University of Washington, Seattle, WA, United States of America
| | - Oleksandr Khegai
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, NY, New York City, United States of America
| | - Matthew McGarry
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States of America
| | - Tyson Lam
- Department Mechanical Engineering, University of Washington, Seattle, WA, United States of America
| | - Jelle Veraart
- Center for Biomedical Imaging, Department Radiology, New York University Grossman School of Medicine, New York City, NY, United States of America
| | - Akbar Alipour
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, NY, New York City, United States of America
| | - Priti Balchandani
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, NY, New York City, United States of America
| | - Mehmet Kurt
- Department Mechanical Engineering, University of Washington, Seattle, WA, United States of America
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, NY, New York City, United States of America
| |
Collapse
|
5
|
Triolo E, Meinhold W, Ozkaya E, Ueda J, Kurt M. Magnetic Resonance Elastography for Mechanical Modeling of the Human Lumbar Intervertebral Disc. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039909 DOI: 10.1109/embc53108.2024.10782890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Magnetic Resonance Elastography (MRE) is a phase-contrast imaging technique that allows for determination of mechanical properties of tissue in-vivo. Due to physiological and morphological changes leading to changes in tissue mechanical properties, MRE may be a promising imaging tool for detection of intervertebral disc degeneration. We therefore performed a preliminary study to determine the frequency dependent mechanical properties of the lumbar intervertebral discs. Six healthy volunteers underwent multifrequency MRE (50, 80, and 100 Hz) to measure the mechanical properties of the intervertebral discs between the L3 and L4, and L4 and L5 vertebrae. Frequency-independent disc mechanical properties and best-fit mechanical model were determined from the frequency-dependent disc data by comparing four different linear viscoelastic material models (Maxwell, Kelvin-Voigt, Springpot, and Zener). A seventh individual with a history of a discectomy on the disc between the L4 and L5 vertebrae was also scanned to provide a preliminary analysis about how degeneration impacts disc mechanical properties. Our findings show that the Zener model may best represent the disc's frequency-dependent mechanical response. Additionally, we observed a significantly lower complex shear modulus in the degenerated disc than the healthy discs at each frequency, demonstrating the potential for MRE to detect early signs of degeneration and pinpoint the cause of chronic back pain.
Collapse
|
6
|
Yamakuni R, Ishikawa H, Ishii S, Kakamu T, Hara J, Sugawara S, Sekino H, Seino S, Fukushima K, Ito H. The Relationship Between Conventionally Obtained Serum-Based Liver Function Indices and Intravoxel Incoherent Motion Diffusion-Weighted Imaging and Magnetic Resonance Elastography in Patients With Hepatocellular Carcinoma. J Comput Assist Tomogr 2024; 48:194-199. [PMID: 37965744 DOI: 10.1097/rct.0000000000001561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
OBJECTIVES To investigate the relationship between conventionally obtained serum-based biochemical indices and intravoxel incoherent motion imaging (IVIM) parameters compared with magnetic resonance elastography (MRE). METHODS Patients with hepatocellular carcinoma who underwent ≥2 liver magnetic resonance imaging (MRI) scan, including IVIM and MRE, between 2017 and 2020 and biochemical testing within 1 week before or after MRI were included in this study. Biochemical tests were performed to determine the albumin-bilirubin (ALBI) score and modified ALBI (mALBI) grade, aspartate aminotransferase to platelet ratio index (APRI), and fibrosis-4 index (FIB-4). The diffusion coefficient ( D ), pseudo-diffusion coefficient ( D *), fractional volume occupied by flowing spins ( f ), and apparent diffusion coefficient were calculated for IVIM. The correlations between (1) the imaging parameters and biochemical indices and (2) the changes in mALBI grades and imaging parameters were evaluated. RESULTS This study included 98 scans of 40 patients (31 men; mean age, 67.7 years). The correlation analysis between the biochemical and IVIM parameters showed that ALBI score and D* had the best correlation ( r = -0.3731, P < 0.001), and the correlation was higher than that with MRE ( r = 0.3289, P < 0.001). However, among FIB-4, APRI, and MRI parameters, MRE outperformed IVIM parameters (MRE and FIB-4, r = 0.3775, P < 0.001; MRE and APRI, r = 0.4687, P < 0.001). There were significant differences in the changes in MRE among the 3 groups (improved, deteriorated, and unchanged mALBI groups) in the analysis of covariance ( P = 0.0434). There were no significant changes in IVIM. CONCLUSIONS Intravoxel incoherent motion imaging has the potential to develop into a more readily obtainable method of liver function assessment.
Collapse
Affiliation(s)
- Ryo Yamakuni
- From the Department of Radiology and Nuclear Medicine, Fukushima Medical University School of Medicine
| | | | - Shiro Ishii
- From the Department of Radiology and Nuclear Medicine, Fukushima Medical University School of Medicine
| | - Takeyasu Kakamu
- Department of Hygiene and Preventive Medicine, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Junko Hara
- From the Department of Radiology and Nuclear Medicine, Fukushima Medical University School of Medicine
| | - Shigeyasu Sugawara
- From the Department of Radiology and Nuclear Medicine, Fukushima Medical University School of Medicine
| | | | - Shinya Seino
- Department of Radiology, Fukushima Medical University Hospital
| | - Kenji Fukushima
- From the Department of Radiology and Nuclear Medicine, Fukushima Medical University School of Medicine
| | - Hiroshi Ito
- From the Department of Radiology and Nuclear Medicine, Fukushima Medical University School of Medicine
| |
Collapse
|
7
|
Abstract
ABSTRACT The mechanical traits of cancer include abnormally high solid stress as well as drastic and spatially heterogeneous changes in intrinsic mechanical tissue properties. Whereas solid stress elicits mechanosensory signals promoting tumor progression, mechanical heterogeneity is conducive to cell unjamming and metastatic spread. This reductionist view of tumorigenesis and malignant transformation provides a generalized framework for understanding the physical principles of tumor aggressiveness and harnessing them as novel in vivo imaging markers. Magnetic resonance elastography is an emerging imaging technology for depicting the viscoelastic properties of biological soft tissues and clinically characterizing tumors in terms of their biomechanical properties. This review article presents recent technical developments, basic results, and clinical applications of magnetic resonance elastography in patients with malignant tumors.
Collapse
Affiliation(s)
- Jing Guo
- From the Department of Radiology
| | | | | | | |
Collapse
|
8
|
Herthum H, Hetzer S, Kreft B, Tzschätzsch H, Shahryari M, Meyer T, Görner S, Neubauer H, Guo J, Braun J, Sack I. Cerebral tomoelastography based on multifrequency MR elastography in two and three dimensions. Front Bioeng Biotechnol 2022; 10:1056131. [PMID: 36532573 PMCID: PMC9755504 DOI: 10.3389/fbioe.2022.1056131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/21/2022] [Indexed: 09/01/2023] Open
Abstract
Purpose: Magnetic resonance elastography (MRE) generates quantitative maps of the mechanical properties of biological soft tissues. However, published values obtained by brain MRE vary largely and lack detail resolution, due to either true biological effects or technical challenges. We here introduce cerebral tomoelastography in two and three dimensions for improved data consistency and detail resolution while considering aging, brain parenchymal fraction (BPF), systolic blood pressure, and body mass index (BMI). Methods: Multifrequency MRE with 2D- and 3D-tomoelastography postprocessing was applied to the brains of 31 volunteers (age range: 22-61 years) for analyzing the coefficient of variation (CV) and effects of biological factors. Eleven volunteers were rescanned after 1 day and 1 year to determine intraclass correlation coefficient (ICC) and identify possible long-term changes. Results: White matter shear wave speed (SWS) was slightly higher in 2D-MRE (1.28 ± 0.02 m/s) than 3D-MRE (1.22 ± 0.05 m/s, p < 0.0001), with less variation after 1 day in 2D (0.33 ± 0.32%) than in 3D (0.96 ± 0.66%, p = 0.004), which was also reflected in a slightly lower CV and higher ICC in 2D (1.84%, 0.97 [0.88-0.99]) than in 3D (3.89%, 0.95 [0.76-0.99]). Remarkably, 3D-MRE was sensitive to a decrease in white matter SWS within only 1 year, whereas no change in white matter volume was observed during this follow-up period. Across volunteers, stiffness correlated with age and BPF, but not with blood pressure and BMI. Conclusion: Cerebral tomoelastography provides high-resolution viscoelasticity maps with excellent consistency. Brain MRE in 2D shows less variation across volunteers in shorter scan times than 3D-MRE, while 3D-MRE appears to be more sensitive to subtle biological effects such as aging.
Collapse
Affiliation(s)
- Helge Herthum
- Berlin Center for Advanced Neuroimaging, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Medical Informatics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bernhard Kreft
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heiko Tzschätzsch
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mehrgan Shahryari
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tom Meyer
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Steffen Görner
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hennes Neubauer
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jing Guo
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|