1
|
Pfann M, Ben-Tal Cohen E, Sela-Donenfeld D, Cinnamon Y. Application of the Magnet-Cre optogenetic system in the chicken model. Dev Biol 2025; 523:68-81. [PMID: 40187475 DOI: 10.1016/j.ydbio.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/03/2025] [Accepted: 04/03/2025] [Indexed: 04/07/2025]
Abstract
Chickens serve as an excellent model organism for developmental biology, offering unique opportunities for precise spatiotemporal access to embryos within eggs. Optogenes are light-activated proteins that regulate gene expression, offering a non-invasive method to activate genes at specific locations and developmental stages, advancing developmental biology research. This study employed the Magnet-Cre optogenetic system to control gene expression in developing chicken embryos. Magnet-Cre consists of two light-sensitive protein domains that dimerize upon light activation, each attached to an inactive half of the Cre recombinase enzyme, which becomes active upon dimerization. We developed an all-in-one plasmid containing a green fluorescent protein marker, the Magnet-Cre system, and a light-activated red fluorescent protein gene. This plasmid was electroporated into the neural tube of Hamburger and Hamilton (H&H) stage 14 chicken embryos. Embryo samples were cleared using the CUBIC protocol and imaged with a light sheet microscope to analyze optogenetic activity via red-fluorescent cells. We established a pipeline for Magnet-Cre activation in chicken embryos, demonstrating that a single 3-min exposure to blue light following incubation at 28 °C was sufficient to trigger gene activity within the neural tube, with increased activity upon additional light exposure. Finally, we showed a spatiotemporal control of gene activity using a localized laser light induction. This research lays the groundwork for further advancements in avian developmental biology and poultry research, enabling spatiotemporal control of genes in both embryos and transgenic chickens.
Collapse
Affiliation(s)
- Michael Pfann
- Department of Poultry and Aquaculture Science, Institute of Animal Sciences, Agricultural Research Organization - Volcani Institute, Rishon LeZion, 7505101, Israel; Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Enbal Ben-Tal Cohen
- Department of Poultry and Aquaculture Science, Institute of Animal Sciences, Agricultural Research Organization - Volcani Institute, Rishon LeZion, 7505101, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yuval Cinnamon
- Department of Poultry and Aquaculture Science, Institute of Animal Sciences, Agricultural Research Organization - Volcani Institute, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
2
|
Sahan AZ, Metha S, Zhang J. Visualization of Subcellular mTOR Complex 1 Activity with a FRET-Based Sensor (TORCAR). Methods Mol Biol 2025; 2882:139-162. [PMID: 39992508 DOI: 10.1007/978-1-0716-4284-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a nutrient-sensing complex that integrates inputs from several pathways to promote cell growth and proliferation. mTORC1 localizes to many cellular compartments, including the nucleus, lysosomes, and plasma membrane. However, little is known about the spatial regulation of mTORC1 and the specific functions of mTORC1 at these locations. To address these questions, we previously developed a Förster resonance energy transfer (FRET)-based mTORC1 activity reporter (TORCAR) to visualize the dynamic changes in mTORC1 activity within live cells. Here, we describe a detailed protocol for using subcellularly targeted TORCAR constructs to investigate subcellular mTORC1 activities via live-cell fluorescence microscopy.
Collapse
Affiliation(s)
- Ayse Z Sahan
- Department of Pharmacology, University of California, San Diego, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, CA, USA
| | - Sohum Metha
- Department of Pharmacology, University of California, San Diego, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, CA, USA.
- Department of Chemistry & Biochemistry, University of California, San Diego, CA, USA.
- Department of Bioengineering, University of California, San Diego, CA, USA.
| |
Collapse
|
3
|
Banerjee S, Smith IM, Hengen AC, Stroka KM. Methods for studying mammalian aquaporin biology. Biol Methods Protoc 2023; 8:bpad031. [PMID: 38046463 PMCID: PMC10689382 DOI: 10.1093/biomethods/bpad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Aquaporins (AQPs), transmembrane water-conducting channels, have earned a great deal of scrutiny for their critical physiological roles in healthy and disease cell states, especially in the biomedical field. Numerous methods have been implemented to elucidate the involvement of AQP-mediated water transport and downstream signaling activation in eliciting whole cell, tissue, and organ functional responses. To modulate these responses, other methods have been employed to investigate AQP druggability. This review discusses standard in vitro, in vivo, and in silico methods for studying AQPs, especially for biomedical and mammalian cell biology applications. We also propose some new techniques and approaches for future AQP research to address current gaps in methodology.
Collapse
Affiliation(s)
- Shohini Banerjee
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Ian M Smith
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Autumn C Hengen
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore MD 21201, United States
- Biophysics Program, University of Maryland, MD 20742, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore MD 21201, United States
| |
Collapse
|
4
|
Harper CS, Casler JC, Lackner LL. Temporal control of contact site formation reveals a relationship between mitochondrial division and Num1-mediated mitochondrial tethering. Mol Biol Cell 2023; 34:ar108. [PMID: 37585290 PMCID: PMC10559308 DOI: 10.1091/mbc.e23-05-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023] Open
Abstract
Mitochondrial division is critical for maintenance of mitochondrial morphology and cellular homeostasis. Previous studies have suggested that the mitochondria-ER-cortex anchor (MECA), a tripartite membrane contact site between mitochondria, the ER, and the plasma membrane, is involved in mitochondrial division. However, its role is poorly understood. We developed a system to control MECA formation and depletion, which allowed us to investigate the relationship between MECA-mediated contact sites and mitochondrial division. Num1 is the protein that mediates mitochondria-ER-plasma membrane tethering at MECA sites. Using both rapamycin-inducible dimerization and auxin-inducible degradation components coupled with Num1, we developed systems to temporally control the formation and depletion of the native contact site. Additionally, we designed a regulatable Num1-independant mitochondria-PM tether. We found that mitochondria-PM tethering alone is not sufficient to rescue mitochondrial division and that a specific feature of Num1-mediated tethering is required. This study demonstrates the utility of systems that regulate contact-site formation and depletion in studying the biological functions of membrane contact sites.
Collapse
Affiliation(s)
- Clare S. Harper
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208
| | - Jason C. Casler
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208
| | - Laura L. Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208
| |
Collapse
|
5
|
Janosko C, Shade O, Courtney TM, Horst TJ, Liu M, Khare SD, Deiters A. Genetic Encoding of Arylazopyrazole Phenylalanine for Optical Control of Translation. ACS OMEGA 2023; 8:26590-26596. [PMID: 37521667 PMCID: PMC10373180 DOI: 10.1021/acsomega.3c03512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
An arylazopyrazole was explored for its use as an enhanced photoswitchable amino acid in genetic code expansion. This new unnatural amino acid was successfully incorporated into proteins in both bacterial and mammalian cells. While photocontrol of translation required pulsed irradiations, complete selectivity for the trans-configuration by the pyrrolysyl tRNA synthetase was observed, demonstrating expression of a gene of interest selectively controlled via light exposure.
Collapse
Affiliation(s)
- Chasity
P. Janosko
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Olivia Shade
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Taylor M. Courtney
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Trevor J. Horst
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Melinda Liu
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Sagar D. Khare
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Alexander Deiters
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
6
|
Sittewelle M, Ferrandiz N, Fesenko M, Royle SJ. Genetically encoded imaging tools for investigating cell dynamics at a glance. J Cell Sci 2023; 136:jcs260783. [PMID: 37039102 DOI: 10.1242/jcs.260783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
The biology of a cell is the sum of many highly dynamic processes, each orchestrated by a plethora of proteins and other molecules. Microscopy is an invaluable approach to spatially and temporally dissect the molecular details of these processes. Hundreds of genetically encoded imaging tools have been developed that allow cell scientists to determine the function of a protein of interest in the context of these dynamic processes. Broadly, these tools fall into three strategies: observation, inhibition and activation. Using examples for each strategy, in this Cell Science at a Glance and the accompanying poster, we provide a guide to using these tools to dissect protein function in a given cellular process. Our focus here is on tools that allow rapid modification of proteins of interest and how observing the resulting changes in cell states is key to unlocking dynamic cell processes. The aim is to inspire the reader's next set of imaging experiments.
Collapse
Affiliation(s)
- Méghane Sittewelle
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Nuria Ferrandiz
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Mary Fesenko
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
7
|
Scheele CLGJ, Herrmann D, Yamashita E, Celso CL, Jenne CN, Oktay MH, Entenberg D, Friedl P, Weigert R, Meijboom FLB, Ishii M, Timpson P, van Rheenen J. Multiphoton intravital microscopy of rodents. NATURE REVIEWS. METHODS PRIMERS 2022; 2:89. [PMID: 37621948 PMCID: PMC10449057 DOI: 10.1038/s43586-022-00168-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 08/26/2023]
Abstract
Tissues are heterogeneous with respect to cellular and non-cellular components and in the dynamic interactions between these elements. To study the behaviour and fate of individual cells in these complex tissues, intravital microscopy (IVM) techniques such as multiphoton microscopy have been developed to visualize intact and live tissues at cellular and subcellular resolution. IVM experiments have revealed unique insights into the dynamic interplay between different cell types and their local environment, and how this drives morphogenesis and homeostasis of tissues, inflammation and immune responses, and the development of various diseases. This Primer introduces researchers to IVM technologies, with a focus on multiphoton microscopy of rodents, and discusses challenges, solutions and practical tips on how to perform IVM. To illustrate the unique potential of IVM, several examples of results are highlighted. Finally, we discuss data reproducibility and how to handle big imaging data sets.
Collapse
Affiliation(s)
- Colinda L. G. J. Scheele
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - David Herrmann
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Department, Sydney, New South Wales, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Erika Yamashita
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Cristina Lo Celso
- Department of Life Sciences and Centre for Hematology, Imperial College London, London, UK
- Sir Francis Crick Institute, London, UK
| | - Craig N. Jenne
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Maja H. Oktay
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - David Entenberg
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
- David H. Koch Center for Applied Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Franck L. B. Meijboom
- Department of Population Health Sciences, Sustainable Animal Stewardship, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Faculty of Humanities, Ethics Institute, Utrecht University, Utrecht, Netherlands
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Paul Timpson
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Department, Sydney, New South Wales, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jacco van Rheenen
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
8
|
Gheorghiu M, Polonschii C, Popescu O, Gheorghiu E. Advanced Optogenetic-Based Biosensing and Related Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4151. [PMID: 34361345 PMCID: PMC8347019 DOI: 10.3390/ma14154151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
The ability to stimulate mammalian cells with light, brought along by optogenetic control, has significantly broadened our understanding of electrically excitable tissues. Backed by advanced (bio)materials, it has recently paved the way towards novel biosensing concepts supporting bio-analytics applications transversal to the main biomedical stream. The advancements concerning enabling biomaterials and related novel biosensing concepts involving optogenetics are reviewed with particular focus on the use of engineered cells for cell-based sensing platforms and the available toolbox (from mere actuators and reporters to novel multifunctional opto-chemogenetic tools) for optogenetic-enabled real-time cellular diagnostics and biosensor development. The key advantages of these modified cell-based biosensors concern both significantly faster (minutes instead of hours) and higher sensitivity detection of low concentrations of bioactive/toxic analytes (below the threshold concentrations in classical cellular sensors) as well as improved standardization as warranted by unified analytic platforms. These novel multimodal functional electro-optical label-free assays are reviewed among the key elements for optogenetic-based biosensing standardization. This focused review is a potential guide for materials researchers interested in biosensing based on light-responsive biomaterials and related analytic tools.
Collapse
Affiliation(s)
- Mihaela Gheorghiu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
| | - Cristina Polonschii
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
| | - Octavian Popescu
- Molecular Biology Center, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai-University, 400084 Cluj-Napoca, Romania;
- Institute of Biology Bucharest, Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Eugen Gheorghiu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
| |
Collapse
|