1
|
Zhai Z, Li C, Wang T, Yu H, Li M, Li C. Electromagnetically Heating and Oscillating Liquid Metal for Catalyzing Polyester Depolymerization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2502011. [PMID: 40095262 DOI: 10.1002/adma.202502011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Depolymerization and recycling of polyesters have shown great significance to economy, ecology, carbon neutrality and human health. Efficient catalysts for thermolysis depolymerization have long been pursued to achieve rapid depolymerization, high selectivity, and low energy consumption. In this study, it is found that liquid metal (LM) can serve as the efficient self-heater, mechanic disturber and catalyst for thermolysis depolymerization of polyesters under alternating electromagnetic fields. When dissolving different metals (e.g., Sn, Zn, Al, and Mg) into gallium, LMs may provide dynamic interactions between the catalyst and reactants, spontaneous metal enriching, and oxidation within the LM surface layer. Without any conventional heaters and mechanic shakers, polycaprolactone is catalytically depolymerized into ɛ-caprolactone at the rate of ≈700 mg h-1 mL-1 with the selectivity of 95.5%. The high surface tension and high mobility of LM also enable continuous depolymerization at an appropriate feeding speed of polyesters (including polyethylene terephthalate, polyhydroxybutyrate and polylactic acid). Thus, this study may offer an unprecedented "all-in-one" platform of liquid metal for continuous thermolysis depolymerization of polyesters, while without any requirement of external heater, mixer, and catalysts.
Collapse
Affiliation(s)
- Zhuanzhuan Zhai
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Songling Road 189, Qingdao, 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Songling Road 189, Qingdao, 266101, P. R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, P. R. China
| | - Chao Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, 266101, P. R. China
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Ningxia Road 308, Qingdao, 266071, P. R. China
| | - Ting Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Songling Road 189, Qingdao, 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Songling Road 189, Qingdao, 266101, P. R. China
| | - Hongwei Yu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, 266101, P. R. China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Ningxia Road 308, Qingdao, 266071, P. R. China
| | - Mingjie Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Songling Road 189, Qingdao, 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Songling Road 189, Qingdao, 266101, P. R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, P. R. China
| | - Chaoxu Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Songling Road 189, Qingdao, 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Songling Road 189, Qingdao, 266101, P. R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Liu J, Blosch SE, Volokhova AS, Crater ER, Gallin CF, Moore RB, Matson JB, Byers JA. Using Redox-Switchable Polymerization Catalysis to Synthesize a Chemically Recyclable Thermoplastic Elastomer. Angew Chem Int Ed Engl 2024; 63:e202317699. [PMID: 38168073 PMCID: PMC10873474 DOI: 10.1002/anie.202317699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Indexed: 01/05/2024]
Abstract
In an effort to synthesize chemically recyclable thermoplastic elastomers, a redox-switchable catalytic system was developed to synthesize triblock copolymers containing stiff poly(lactic acid) (PLA) end blocks and a flexible poly(tetrahydrofuran-co-cyclohexene oxide) (poly(THF-co-CHO) copolymer as the mid-block. The orthogonal reactivity induced by changing the oxidation state of the iron-based catalyst enabled the synthesis of the triblock copolymers in a single reaction flask from a mixture of monomers. The triblock copolymers demonstrated improved flexibility compared to poly(l-lactic acid) (PLLA) and thermomechanical properties that resemble thermoplastic elastomers, including a rubbery plateau in the range of -60 to 40 °C. The triblock copolymers containing a higher percentage of THF versus CHO were more flexible, and a blend of triblock copolymers containing PLLA and poly(d-lactic acid) (PDLA) end-blocks resulted in a stereocomplex that further increased polymer flexibility. Besides the low cost of lactide and THF, the sustainability of this new class of triblock copolymers was also supported by their depolymerization, which was achieved by exposing the copolymers sequentially to FeCl3 and ZnCl2 /PEG under reactive distillation conditions.
Collapse
Affiliation(s)
- Jiangwei Liu
- Department of Chemistry, Boston College, Eugene F. Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Sarah E Blosch
- Department of Chemistry, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Anastasia S Volokhova
- Department of Chemistry, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Erin R Crater
- Department of Chemistry, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Connor F Gallin
- Department of Chemistry, Boston College, Eugene F. Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Robert B Moore
- Department of Chemistry, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - John B Matson
- Department of Chemistry, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jeffery A Byers
- Department of Chemistry, Boston College, Eugene F. Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| |
Collapse
|
3
|
Gallin CF, Lee WW, Byers JA. A Simple, Selective, and General Catalyst for Ring Closing Depolymerization of Polyesters and Polycarbonates for Chemical Recycling. Angew Chem Int Ed Engl 2023; 62:e202303762. [PMID: 37093979 PMCID: PMC10518907 DOI: 10.1002/anie.202303762] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
The ability to efficiently and selectively process mixed polymer waste is important to address the growing plastic waste problem. Herein, we report that the combination of ZnCl2 and an additive amount of poly(ethylene glycol) under vacuum can readily and selectively depolymerize polyesters and polycarbonates with high ceiling temperatures (Tc >200 °C) back to their constitute monomers. Mechanistic experiments implicate a random chain scission mechanism and a catalyst structure containing one equivalent of ZnCl2 per ethylene glycol repeat unit in the poly(ethylene glycol). In addition to being general for a wide variety of polyesters and polycarbonates, the catalyst system could selectively depolymerize a polyester in the presence of other commodity plastics, demonstrating how reactive distillation using the ZnCl2 /PEG600 catalyst system can be used to separate mixed plastic waste.
Collapse
Affiliation(s)
- Connor F Gallin
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Won-Woo Lee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Jeffery A Byers
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| |
Collapse
|
4
|
Plummer CM, Li L, Chen Y. Ring-Opening Polymerization for the Goal of Chemically Recyclable Polymers. Macromolecules 2023; 56:731-750. [PMID: 36818576 PMCID: PMC9933900 DOI: 10.1021/acs.macromol.2c01694] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/14/2022] [Indexed: 02/08/2023]
Abstract
A crucial modern dilemma relates to the ecological crisis created by excess plastic waste production. An emerging technology for reducing plastic waste is the production of "chemically recyclable" polymers. These polymers can be efficiently synthesized through ring-opening polymerization (ROP/ROMP) and later recycled to pristine monomer by ring-closing depolymerization, in an efficient circular-type system. This Perspective aims to explore the chemistry involved in the preparation of these monomer/polymer systems, while also providing an overview of the challenges involved, including future directions.
Collapse
Affiliation(s)
- Christopher M. Plummer
- International
Centre for Research on Innovative Biobased Materials (ICRI-BioM), Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland,
| | - Le Li
- Key
Laboratory for Polymeric Composite and Functional Materials of Ministry
of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China,School
of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yongming Chen
- Key
Laboratory for Polymeric Composite and Functional Materials of Ministry
of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China,School
of Materials Science and Engineering, Sun
Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
5
|
Ansmann N, Thorwart T, Greb L. Silicon Catalyzed C-O Bond Ring Closing Metathesis of Polyethers. Angew Chem Int Ed Engl 2022; 61:e202210132. [PMID: 36106685 PMCID: PMC9828832 DOI: 10.1002/anie.202210132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 01/12/2023]
Abstract
The Lewis superacid bis(perchlorocatecholato)silane catalyzes C-O bond metathesis of alkyl ethers with an efficiency outperforming all earlier reported systems. Chemoselective ring contractions of macrocyclic crown ethers enable substrate-specific transformations, and an unprecedented ring-closing metathesis of polyethylene glycols allows polymer-selective degradation. Quantum chemical computations scrutinize a high Lewis acidity paired with a simultaneous low propensity for polydentate substrate binding as critical for successful catalysis. Based on these mechanistic insights, a second-generation class of silicon Lewis superacid with enhanced efficacy is identified and demonstrated.
Collapse
Affiliation(s)
- Nils Ansmann
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Thaddäus Thorwart
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Lutz Greb
- Department of Chemistry and Biochemistry-Inorganic ChemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| |
Collapse
|
6
|
Liguori F, Moreno-Marrodán C, Barbaro P. Valorisation of plastic waste via metal-catalysed depolymerisation. Beilstein J Org Chem 2021; 17:589-621. [PMID: 33747233 PMCID: PMC7940818 DOI: 10.3762/bjoc.17.53] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
Metal-catalysed depolymerisation of plastics to reusable building blocks, including monomers, oligomers or added-value chemicals, is an attractive tool for the recycling and valorisation of these materials. The present manuscript shortly reviews the most significant contributions that appeared in the field within the period January 2010–January 2020 describing selective depolymerisation methods of plastics. Achievements are broken down according to the plastic material, namely polyolefins, polyesters, polycarbonates and polyamides. The focus is on recent advancements targeting sustainable and environmentally friendly processes. Biocatalytic or unselective processes, acid–base treatments as well as the production of fuels are not discussed, nor are the methods for the further upgrade of the depolymerisation products.
Collapse
Affiliation(s)
- Francesca Liguori
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Carmen Moreno-Marrodán
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Pierluigi Barbaro
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
7
|
Rana S, Biswas JP, Paul S, Paik A, Maiti D. Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chem Soc Rev 2021; 50:243-472. [DOI: 10.1039/d0cs00688b] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The promising aspects of iron in synthetic chemistry are being explored for three-four decades as a green and eco-friendly alternative to late transition metals. This present review unveils these rich iron-chemistry towards different transformations.
Collapse
Affiliation(s)
- Sujoy Rana
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | | | - Sabarni Paul
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Aniruddha Paik
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Debabrata Maiti
- Department of Chemistry
- IIT Bombay
- Mumbai-400076
- India
- Tokyo Tech World Research Hub Initiative (WRHI)
| |
Collapse
|
8
|
Sun Y, Huang Y, Li M, Lu J, Jin N, Fan B. Synthesis of cyclic ethers by cyclodehydration of 1, n-diols using heteropoly acids as catalysts. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180740. [PMID: 30839702 PMCID: PMC6170547 DOI: 10.1098/rsos.180740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/29/2018] [Indexed: 06/09/2023]
Abstract
Heteropoly acids were used as catalysts for cyclodehydration of various 1,n-diols. Cyclodehydration of butane-1,4-diol, pentane-1,5-diol and hexane-1,6-diol catalysed by H3PW12O40 gave tetrahydrofuran, tetrahydropyran and oxepane, respectively. Cyclodehydration of diethylene glycol, triethylene glycol, diethylene glycol monomethyl ether and polyethylene glycol 200 catalysed by H3PW12O40 gave 1,4-dioxane. In particular, cyclodehydration of hexane-1,6-diol gave an excellent yield of oxepane (80%). The selectivity exhibited by the H3PW12O40 catalyst was even better than that exhibited by other reported catalyst systems for similar cyclodehydration reactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
| |
Collapse
|
9
|
Iron-Catalyzed Ring-Closing C−O/C−O Metathesis of Aliphatic Ethers. Angew Chem Int Ed Engl 2018; 57:6940-6944. [DOI: 10.1002/anie.201802563] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Indexed: 12/11/2022]
|
10
|
Biberger T, Makai S, Lian Z, Morandi B. Eisenkatalysierte C-O/C-O-Bindungsmetathese von aliphatischen Ethern. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Tobias Biberger
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Szabolcs Makai
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Zhong Lian
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Bill Morandi
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| |
Collapse
|
11
|
Affiliation(s)
- Benjamin N. Bhawal
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Bill Morandi
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
12
|
Wang Y, Hou Y, Song H. Ring-closing depolymerization of polytetrahydrofuran to produce tetrahydrofuran using heteropolyacid as catalyst. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Christ EM, Herzberger J, Montigny M, Tremel W, Frey H. Poly(THF-co-cyano ethylene oxide): Cyano Ethylene Oxide (CEO) Copolymerization with THF Leading to Multifunctional and Water-Soluble PolyTHF Polyelectrolytes. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eva-Maria Christ
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- Graduate School Materials Science in Mainz (MAINZ), Staudingerweg 9, D-55128 Mainz, Germany
| | - Jana Herzberger
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- Graduate School Materials Science in Mainz (MAINZ), Staudingerweg 9, D-55128 Mainz, Germany
| | - Mirko Montigny
- Institute
of Inorganic Chemistry and Analytic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Wolfgang Tremel
- Institute
of Inorganic Chemistry and Analytic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Holger Frey
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
14
|
Depolymerization of Polyethers to Chloroesters Using Heterogeneous Proton-exchanged Montmorillonite Catalyst. ChemistrySelect 2016. [DOI: 10.1002/slct.201600052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Maeno Z, Torii H, Yamada S, Mitsudome T, Mizugaki T, Jitsukawa K. Synthesis of tetraline derivatives through depolymerization of polyethers with aromatic compounds using a heterogeneous titanium-exchanged montmorillonite catalyst. RSC Adv 2016. [DOI: 10.1039/c6ra20864a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis of tetraline derivatives through depolymerization of poly(tetramethylene glycol) with several aromatic compounds is newly developed using a titanium-exchanged montmorillonite catalyst.
Collapse
Affiliation(s)
- Zen Maeno
- Department of Materials Engineering Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka
- Japan
| | - Hiroyuki Torii
- Department of Materials Engineering Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka
- Japan
| | - Shota Yamada
- Department of Materials Engineering Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka
- Japan
| | - Takato Mitsudome
- Department of Materials Engineering Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka
- Japan
| | - Tomoo Mizugaki
- Department of Materials Engineering Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka
- Japan
| | - Koichiro Jitsukawa
- Department of Materials Engineering Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka
- Japan
| |
Collapse
|
16
|
Affiliation(s)
- Ingmar Bauer
- Department Chemie, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Hans-Joachim Knölker
- Department Chemie, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| |
Collapse
|
17
|
Enthaler S. Iron-catalyzed depolymerization of polysiloxanes to produce dichlorodimethylsilane, diacetoxydimethylsilane, or dimethoxydimethylsilane. J Appl Polym Sci 2014. [DOI: 10.1002/app.41287] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Stephan Enthaler
- Department of Chemistry; Technische Universität Berlin; Cluster of Excellence “Unifying Concepts in Catalysis”, Straße des 17. Juni 115/C2, D-10623 Berlin Germany
| |
Collapse
|
18
|
Enthaler S, Kretschmer R. Low-temperature depolymerization of polysiloxanes with iron catalysis. CHEMSUSCHEM 2014; 7:2030-2036. [PMID: 24825826 DOI: 10.1002/cssc.201301386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/05/2014] [Indexed: 06/03/2023]
Abstract
The easy accessibility and high adjustability of polymers mainly accounts for the great impact of such materials on modern society. Besides this great success, an important matter is the accumulation of large amounts of end-of-life polymers, which are mainly deposited in landfills or converted by thermal recycling or down-cycling to low-quality materials. In contrast to that, the depolymerization of end-of-life polymers to monomers, which can be applied as feedstock in polymerization chemistry for high-quality polymers, is only carried out for a small fraction of waste. Polysiloxanes are extensively used in a diverse array of technological applications. Based on intrinsic properties of polymers, depolymerization is challenging and only a few high-temperature or less environment-friendly processes have been reported. In this regard, we have set up a capable low-temperature protocol for the depolymerization of poly(dimethylsiloxane) in the presence of catalytic amounts of simple iron salts in combination with different depolymerization reagents. The application of benzoyl fluoride, benzoyl chloride/potassium fluoride, or benzoic anhydride/potassium fluoride as depolymerization reagents affords difluorodimethylsilane or 1,3-difluoro-1,1,3,3-tetramethyldisilxanes as products, which are interesting building blocks for the synthesis of new polymers and allow an overall recycling of polysiloxanes.
Collapse
Affiliation(s)
- Stephan Enthaler
- Technische Universität Berlin, Department of Chemistry, Cluster of Excellence "Unifying Concepts in Catalysis", Str. des 17. Juni 115/C2, 10623 Berlin (Germany).
| | | |
Collapse
|
19
|
Enthaler S. Zinc-Catalyzed Depolymerization of Polyethers to Produce Valuable Building Blocks. Catal Letters 2014. [DOI: 10.1007/s10562-014-1214-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
|
20
|
|
21
|
Enthaler S. Zinc-catalyzed depolymerization of end-of-life polysiloxanes. Angew Chem Int Ed Engl 2014; 53:2716-21. [PMID: 24501107 DOI: 10.1002/anie.201309299] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/18/2013] [Indexed: 11/11/2022]
Abstract
Polymers occupy an important role in our current society. Besides their great success, an issue is the accumulation of huge amounts of end-of-life polymers. Currently, the waste management is based primarily on landfills, thermal recycling, and downcycling. Notably, only a small portion of end-of-life materials is recycled by depolymerization, which refers to the creation of synthetic precursors that can be polymerized to new polymers to close the cycle. Widely used polymers in modern times are silicones (polysiloxanes), the intrinsic properties of which make their depolymerization demanding; only a few high-temperature or less environmentally friendly processes have been reported. In this regard, we have established an efficient low-temperature protocol for the depolymerization of silicones with benzoyl fluoride in the presence of cheap zinc salts as precatalysts to yield defined products. Notably, the products can be useful synthetic precursors for the preparation of new polymers, so that an overall recycling process is feasible.
Collapse
Affiliation(s)
- Stephan Enthaler
- Technische Universität Berlin, Department of Chemistry, Cluster of Excellence "Unifying Concepts in Catalysis", Strasse des 17. Juni 115/C2, 10623 Berlin (Germany).
| |
Collapse
|
22
|
Feng JB, Gong JL, Wu XF. The first zinc-catalyzed oxidation of sulfides to sulfones using H2O2 as green oxidant. RSC Adv 2014. [DOI: 10.1039/c4ra04319g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The first example of the zinc-catalyzed oxidation of sulfides to sulfones has been developed. By using a catalytic amount of zinc salt as the catalyst, DBU as the ligand, various sulfones were produced in good yields with hydrogen peroxide as the terminal green oxidant.
Collapse
Affiliation(s)
- Jian-Bo Feng
- Department of Chemistry
- Zhejiang Sci-Tech University
- Xiasha Campus
- Hangzhou, People′s Republic of China
| | - Jin-Long Gong
- Department of Chemistry
- Zhejiang Sci-Tech University
- Xiasha Campus
- Hangzhou, People′s Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry
- Zhejiang Sci-Tech University
- Xiasha Campus
- Hangzhou, People′s Republic of China
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
| |
Collapse
|