1
|
Centi G, Perathoner S, Genovese C, Arrigo R. Advanced (photo)electrocatalytic approaches to substitute the use of fossil fuels in chemical production. Chem Commun (Camb) 2023; 59:3005-3023. [PMID: 36794323 PMCID: PMC9997108 DOI: 10.1039/d2cc05132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
Electrification of the chemical industry for carbon-neutral production requires innovative (photo)electrocatalysis. This study highlights the contribution and discusses recent research projects in this area, which are relevant case examples to explore new directions but characterised by a little background research effort. It is organised into two main sections, where selected examples of innovative directions for electrocatalysis and photoelectrocatalysis are presented. The areas discussed include (i) new approaches to green energy or H2 vectors, (ii) the production of fertilisers directly from the air, (iii) the decoupling of the anodic and cathodic reactions in electrocatalytic or photoelectrocatalytic devices, (iv) the possibilities given by tandem/paired reactions in electrocatalytic devices, including the possibility to form the same product on both cathodic and anodic sides to "double" the efficiency, and (v) exploiting electrocatalytic cells to produce green H2 from biomass. The examples offer hits to expand current areas in electrocatalysis to accelerate the transformation to fossil-free chemical production.
Collapse
Affiliation(s)
- Gabriele Centi
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Siglinda Perathoner
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Chiara Genovese
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Rosa Arrigo
- University of Salford, 336 Peel building, M5 4WT Manchester, UK
| |
Collapse
|
2
|
Luo J, Moncada J, Ramirez A. Development of a Conceptual Framework for Evaluating the Flexibility of Future Chemical Processes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c03874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jisiwei Luo
- Department of Engineering Systems and Services, Faculty of Technology, Policy and Management, Delft University of Technology, Jaffalaan 5, Delft, 2628 BX, The Netherlands
| | - Jonathan Moncada
- Department of Engineering Systems and Services, Faculty of Technology, Policy and Management, Delft University of Technology, Jaffalaan 5, Delft, 2628 BX, The Netherlands
- TNO, Energy Transition Studies, Radarweg 60, Amsterdam, 1043 NT, The Netherlands
| | - Andrea Ramirez
- Department of Engineering Systems and Services, Faculty of Technology, Policy and Management, Delft University of Technology, Jaffalaan 5, Delft, 2628 BX, The Netherlands
| |
Collapse
|
3
|
Papanikolaou G, Centi G, Perathoner S, Lanzafame P. Catalysis for e-Chemistry: Need and Gaps for a Future De-Fossilized Chemical Production, with Focus on the Role of Complex (Direct) Syntheses by Electrocatalysis. ACS Catal 2022; 12:2861-2876. [PMID: 35280435 PMCID: PMC8902748 DOI: 10.1021/acscatal.2c00099] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/29/2022] [Indexed: 12/29/2022]
Abstract
![]()
The prospects, needs
and limits in current approaches in catalysis
to accelerate the transition to e-chemistry, where
this term indicates a fossil fuel-free chemical production, are discussed.
It is suggested that e-chemistry is a necessary element
of the transformation to meet the targets of net zero emissions by
year 2050 and that this conversion from the current petrochemistry
is feasible. However, the acceleration of the development of catalytic
technologies based on the use of renewable energy sources (indicated
as reactive catalysis) is necessary, evidencing that these are part
of a system of changes and thus should be assessed from this perspective.
However, it is perceived that the current studies in the area are
not properly addressing the needs to develop the catalytic technologies
required for e-chemistry, presenting a series of
relevant aspects and directions in which research should be focused
to develop the framework system transformation necessary to implement e-chemistry.
Collapse
Affiliation(s)
- Georgia Papanikolaou
- University of Messina, Dept. ChiBioFarAm, ERIC aisbl and CASPE/INSTM, V. le F. Stagno d’ Alcontres 31, 98166 Messina, Italy
| | - Gabriele Centi
- University of Messina, Dept. ChiBioFarAm, ERIC aisbl and CASPE/INSTM, V. le F. Stagno d’ Alcontres 31, 98166 Messina, Italy
| | - Siglinda Perathoner
- University of Messina, Dept. ChiBioFarAm, ERIC aisbl and CASPE/INSTM, V. le F. Stagno d’ Alcontres 31, 98166 Messina, Italy
| | - Paola Lanzafame
- University of Messina, Dept. ChiBioFarAm, ERIC aisbl and CASPE/INSTM, V. le F. Stagno d’ Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
4
|
Palm E, Nikoleris A. Conflicting expectations on carbon dioxide utilisation. TECHNOLOGY ANALYSIS & STRATEGIC MANAGEMENT 2020. [DOI: 10.1080/09537325.2020.1810225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ellen Palm
- Environmental and Energy Systems Studies, Lund University, Lund, Sweden
| | | |
Collapse
|
5
|
Highly selective bifunctional Ni zeo-type catalysts for hydroprocessing of methyl palmitate to green diesel. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Chemistry and energy beyond fossil fuels. A perspective view on the role of syngas from waste sources. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
The Potential of Industrial Symbiosis: Case Analysis and Main Drivers and Barriers to Its Implementation. SUSTAINABILITY 2019. [DOI: 10.3390/su11247095] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Industrial symbiosis, which is characterised mainly by the reuse of waste from one company as raw material by another, has been applied worldwide with recognised environmental, economic, and social benefits. However, the potential for industrial symbiosis is not exhausted in existing cases, and there is still a wide range of opportunities for its application. Through a comprehensive literature review, this article aims to compile and analyse studies that focus on potential industrial symbiosis in real contexts, to highlight the margin of optimisation that is not being used. The cases reported in the publications identified here were characterised and analysed according to geographic location, type of economic activity, waste/by-products, main benefits, and the methods employed in the studies. From this analysis, we conclude that there is great potential for applications involving industrial symbiosis throughout the world, and especially in Europe, corresponding to 53% of the total cases analysed. Manufacturing stood out as the sector with the highest potential for establishing symbiosis relationships, and the most common types of waste streams in potential networks were organic, plastic and rubber, wood, and metallic materials. This article also discusses the main drivers and barriers to realising the potential of industrial symbiosis. The diversity of industries, geographical proximity, facilitating entities and legislation, plans, and policies are shown to be the main drivers.
Collapse
|
8
|
Sulfonated Hydrothermal Carbons from Cellulose and Glucose as Catalysts for Glycerol Ketalization. Catalysts 2019. [DOI: 10.3390/catal9100804] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Solketal is one of the most used glycerol-derived solvents. Its production via heterogeneous catalysis is crucial for avoiding important product losses typically found in the aqueous work-up in homogeneous catalysis. In this work, we present a study of the catalytic synthesis of solketal using sulfonated hydrothermal carbons (SHTC). They were prepared from glucose and cellulose resulting in different textural properties depending on the hydrothermal treatment conditions. The sulfonated hydrothermal carbons were also coated on a graphite microfiber felt (SHTC@GF). Thus, up to nine different solids were tested, and their activity was compared with commercial acidic resins. The solids presented very different catalytic activity, which did not correlate with their physical-chemical properties indicating that other aspects likely influence the transport of reactants and products to the catalytic surface. Additionally, the SHTC prepared from cellulose showed better reusability in batch reaction tests. This work also presents the first results for the production of solketal in a flow reactor, which opens the way to the use of SHTC@GF for this kind of reactions.
Collapse
|
9
|
Centi G, Iaquaniello G, Perathoner S. Chemical engineering role in the use of renewable energy and alternative carbon sources in chemical production. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s42480-019-0006-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Del Pilar Anzola Rojas M, Zaiat M, Gonzalez ER, De Wever H, Pant D. Effect of the electric supply interruption on a microbial electrosynthesis system converting inorganic carbon into acetate. BIORESOURCE TECHNOLOGY 2018; 266:203-210. [PMID: 29982040 DOI: 10.1016/j.biortech.2018.06.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Microbial electrosynthesis (MES) technology relies on the direct use of electrons to convert CO2 into long chain organic chemicals. Therefore, MES has been proposed to be coupled to the renewable electricity supply, mainly from solar and wind sources. However, those energies suffer fluctuations and interruptions of variable duration, which can have an adverse effect on MES performance. Such effects on MES has been evaluated for the first time under different interruptions time. H-cell-MES reactors were disconnected from power supply during 4, 6, 8, 16, 32 and 64 h. Interruptions affected the acetate production rate, causing a decrease of until 77% after 64 h off. However, after all the interruptions, the acetate production was restored, taking between 7 and 16 h for the reduction current to turn steady. Therefore, microbial community on MES proved to be resilient and able to recover the electro-autotrophic activity despite the duration of current supply interruptions.
Collapse
Affiliation(s)
- Mélida Del Pilar Anzola Rojas
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; São Carlos Institute of Chemistry, University of São Paulo (USP), Brazil
| | - Marcelo Zaiat
- Laboratory of Biological Processes, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering, University of São Paulo (USP), Brazil
| | | | - Heleen De Wever
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Deepak Pant
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium.
| |
Collapse
|
11
|
Camp JE. Bio-available Solvent Cyrene: Synthesis, Derivatization, and Applications. CHEMSUSCHEM 2018; 11:3048-3055. [PMID: 30044553 DOI: 10.1002/cssc.201801420] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/24/2018] [Indexed: 05/12/2023]
Abstract
The development of green solvents is one of the key tenets of Green Chemistry as solvents account for the majority of waste stemming from the production of the chemicals on which we have all come to rely. An important class of solvents is the dipolar aprotics, which include N,N-dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP). In addition to being derived from non-renewable resources, these solvents are also under increased regulatory pressures that will limit their industrial applications. This Concept concerns the bio-available solvent Cyrene (dihydrolevoglucosenone) as a potential replacement for toxic dipolar aprotic solvents. An emphasis is placed on examining the strengths and weaknesses of Cyrene as a solvent and is accomplished by looking at the synthesis, derivatization, and application in synthetic protocols of Cyrene. With respect to the Twelve Principles of Green Chemistry, this Concept describes a bio-available solvent that should have a disruptive effect on the use of traditional industrial dipolar aprotic solvents.
Collapse
Affiliation(s)
- Jason E Camp
- Department of Chemical Sciences, University of Huddersfield, Queensgate, Huddersfield, UK
| |
Collapse
|
12
|
Aloise A, Catizzone E, Migliori M, B.Nagy J, Giordano G. Catalytic behavior in propane aromatization using GA-MFI catalyst. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2017.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Lanzafame P, Abate S, Ampelli C, Genovese C, Passalacqua R, Centi G, Perathoner S. Beyond Solar Fuels: Renewable Energy-Driven Chemistry. CHEMSUSCHEM 2017; 10:4409-4419. [PMID: 29121439 DOI: 10.1002/cssc.201701507] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
The future feasibility of decarbonized industrial chemical production based on the substitution of fossil feedstocks (FFs) with renewable energy (RE) sources is discussed. Indeed, the use of FFs as an energy source has the greatest impact on the greenhouse gas emissions of chemical production. This future scenario is indicated as "solar-driven" or "RE-driven" chemistry. Its possible implementation requires to go beyond the concept of solar fuels, in particular to address two key aspects: i) the use of RE-driven processes for the production of base raw materials, such as olefins, methanol, and ammonia, and ii) the development of novel RE-driven routes that simultaneously realize process and energy intensification, particularly in the direction of a significant reduction of the number of the process steps.
Collapse
Affiliation(s)
- Paola Lanzafame
- Dept. MIFT (Industrial Chemistry), Univ. Messina, V.le F. Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Salvatare Abate
- Dept. ChiBioFarAm (Industrial Chemistry), Univ. Messina, V.le F. Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Claudio Ampelli
- Dept. ChiBioFarAm (Industrial Chemistry), Univ. Messina, V.le F. Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Chiara Genovese
- Dept. ChiBioFarAm (Industrial Chemistry), Univ. Messina, V.le F. Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Rosalba Passalacqua
- Dept. ChiBioFarAm (Industrial Chemistry), Univ. Messina, V.le F. Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Gabriele Centi
- Dept. MIFT (Industrial Chemistry), Univ. Messina, V.le F. Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Siglinda Perathoner
- Dept. ChiBioFarAm (Industrial Chemistry), Univ. Messina, V.le F. Stagno D'Alcontres 31, 98166, Messina, Italy
| |
Collapse
|
14
|
Biorefineries and the food, energy, water nexus — towards a whole systems approach to design and planning. Curr Opin Chem Eng 2017. [DOI: 10.1016/j.coche.2017.08.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Ricciardi M, Passarini F, Vassura I, Proto A, Capacchione C, Cucciniello R, Cespi D. Glycidol, a Valuable Substrate for the Synthesis of Monoalkyl Glyceryl Ethers: A Simplified Life Cycle Approach. CHEMSUSCHEM 2017; 10:2291-2300. [PMID: 28376258 DOI: 10.1002/cssc.201700525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 06/07/2023]
Abstract
The disposal of any waste by recovering it within the production plant represents the ultimate goal of every biorefinery. In this scenario, the selective preparation of monoalkyl glyceryl ethers (MAGEs) starting from glycidol, obtained as byproduct in the epichlorohydrin production plant, represents a very promising strategy. Here, we report the synthesis of MAGEs through the reaction of glycidol with alcohols catalyzed by a green homogeneous Lewis acids catalyst, such as BiIII triflate, under very mild reaction conditions. To evaluate the green potential of the proposed alternative, a simplified life cycle assessment (LCA) approach was followed by comparing the environmental performance of the proposed innovative route to prepare MAGEs with that of the most investigated pathway from glycerol. A considerable reduction of all impact categories considered was observed in our experimental conditions, suggesting that the glycidol-to-MAGEs route can be a valuable integration to the glycerol-to-MAGEs chain. Thanks to the use of primary data within the LCA model, the results achieved are a very good approximation of the real case.
Collapse
Affiliation(s)
- Maria Ricciardi
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Fabrizio Passarini
- Department of Industrial Chemistry "Toso Montanari'', University of Bologna, Viale del Risorgimento 4, 40135, Bologna, Italy
- Centro Interdipartimentale di Ricerca Industriale "Energia e Ambiente", Via Angherà 22, 47900, Rimini, Italy
| | - Ivano Vassura
- Department of Industrial Chemistry "Toso Montanari'', University of Bologna, Viale del Risorgimento 4, 40135, Bologna, Italy
- Centro Interdipartimentale di Ricerca Industriale "Energia e Ambiente", Via Angherà 22, 47900, Rimini, Italy
| | - Antonio Proto
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Carmine Capacchione
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Raffaele Cucciniello
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Daniele Cespi
- Department of Industrial Chemistry "Toso Montanari'', University of Bologna, Viale del Risorgimento 4, 40135, Bologna, Italy
- Environmental Management and Consulting (EMC), Innovation Lab S.r.l., Viale Italia 29, 47921, Rimini, Italy
| |
Collapse
|
16
|
Lanzafame P, Perathoner S, Centi G, Heracleous E, Iliopoulou EF, Triantafyllidis KS, Lappas AA. Effect of the Structure and Mesoporosity in Ni/Zeolite Catalysts for
n
‐Hexadecane Hydroisomerisation and Hydrocracking. ChemCatChem 2017. [DOI: 10.1002/cctc.201601670] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paola Lanzafame
- Dept.s ChiBioFarAm and MIFT—Chimica IndustrialeUniversity of Messina (Italy), INSTM/CASPE and ERIC aisbl V.le F. Stagno D'Alcontres 31 98166 Messina Italy
| | - Siglinda Perathoner
- Dept.s ChiBioFarAm and MIFT—Chimica IndustrialeUniversity of Messina (Italy), INSTM/CASPE and ERIC aisbl V.le F. Stagno D'Alcontres 31 98166 Messina Italy
| | - Gabriele Centi
- Dept.s ChiBioFarAm and MIFT—Chimica IndustrialeUniversity of Messina (Italy), INSTM/CASPE and ERIC aisbl V.le F. Stagno D'Alcontres 31 98166 Messina Italy
| | - Elli Heracleous
- Chemical Process & Energy Resources Institute (CPERI)Centre for Research and Technology Hellas (CERTH) 57001 Thessaloniki Greece
- School of Science and TechnologyInternational Hellenic University 57001 Thessaloniki Greece
| | - Eleni F. Iliopoulou
- Chemical Process & Energy Resources Institute (CPERI)Centre for Research and Technology Hellas (CERTH) 57001 Thessaloniki Greece
| | - Konstantinos S. Triantafyllidis
- Chemical Process & Energy Resources Institute (CPERI)Centre for Research and Technology Hellas (CERTH) 57001 Thessaloniki Greece
- Department of ChemistryAristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Angelos A. Lappas
- Chemical Process & Energy Resources Institute (CPERI)Centre for Research and Technology Hellas (CERTH) 57001 Thessaloniki Greece
| |
Collapse
|
17
|
Perathoner S, Gross S, Hensen EJM, Wessel H, Chraye H, Centi G. Looking at the Future of Chemical Production through the European Roadmap on Science and Technology of Catalysis the EU Effort for a Long-term Vision. ChemCatChem 2017. [DOI: 10.1002/cctc.201601641] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Siglinda Perathoner
- Dept.s ChiBioFarAm and MIFT-Chimica Industriale and ERIC aisbl; University of Messina; V.le F. Stagno D'Alcontres 31 98166 Messina Italy
| | - Silvia Gross
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, ICMATE-CNR, Dipartimento di Scienze Chimiche; Università degli Studi di Padova; via Francesco Marzolo, 1 35131 Padova Italy
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials Chemistry; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Helge Wessel
- Directorate General for Research & Innovation, Industrial Technologies; European Commission; B-1049 Brussels Belgium
| | - Hélène Chraye
- Directorate General for Research & Innovation, Industrial Technologies; European Commission; B-1049 Brussels Belgium
| | - Gabriele Centi
- Dept.s ChiBioFarAm and MIFT-Chimica Industriale and ERIC aisbl; University of Messina; V.le F. Stagno D'Alcontres 31 98166 Messina Italy
| |
Collapse
|
18
|
Beller M, Centi G, Sun L. Chemistry Future: Priorities and Opportunities from the Sustainability Perspective. CHEMSUSCHEM 2017; 10:6-13. [PMID: 27976531 DOI: 10.1002/cssc.201601739] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 06/06/2023]
Abstract
To celebrate the 10 year anniversary of ChemSusChem, we as the chairmen of the editorial board are writing this Essay to summarize important scientific contributions to our journal during the past decade in terms of sustainable science and technology. Bibliometric analysis of published papers show that biorefinery, solar energy conversion, energy-storage materials, and carbon dioxide utilizations attracted most attention in this area. According to our own knowledge and understanding and from the sustainability point of view, we are also pointing out those research directions that we believe can play key roles in the future chemistry to meet the grand challenges in energy and environment. Hopefully, these perspective aspects will provide the readers with new angles to look at the chemistry in the coming decades and inspire the development of new technologies to make our society sustainable.
Collapse
Affiliation(s)
- Matthias Beller
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Gabriele Centi
- Dept. MIFT (Industrial Chemistry), Univ. Messina, V.le F. Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Licheng Sun
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, 100 44, Stockholm, Sweden
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology, 116024, Dalian, PR China
| |
Collapse
|
19
|
Vanneste J, Ennaert T, Vanhulsel A, Sels B. Unconventional Pretreatment of Lignocellulose with Low-Temperature Plasma. CHEMSUSCHEM 2017; 10:14-31. [PMID: 27922209 DOI: 10.1002/cssc.201601381] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/04/2016] [Indexed: 05/22/2023]
Abstract
Lignocellulose represents a potential supply of sustainable feedstock for the production of biofuels and chemicals. There is, however, an important cost and efficiency challenge associated with the conversion of such lignocellulosics. Because its structure is complex and not prone to undergo chemical reactions very easily, chemical and mechanical pretreatments are usually necessary to be able to refine them into the compositional building blocks (carbohydrates and lignin) from which value-added platform molecules, such as glucose, ethylene glycol, 5-hydroxymethylfurfural, and levulinic acid, and biofuels, such as bioderived naphtha, kerosene, and diesel fractions, will be produced. Conventional (wet) methods are usually polluting, aggressive, and highly energy consuming, so any alternative activation procedure of the lignocellulose is highly recommended and anticipated in recent and future biomass research. Lignocellulosic plasma activation has emerged as an interesting (dry) treatment technique. In the long run, in particular, in times of fairly accessible renewable electricity, plasma may be considered as an alternative to conventional pretreatment methods, but current knowledge is too little and examples too few to guarantee that statement. This review therefore highlights recent knowledge, advancements, and shortcomings in the field of plasma treatment of cellulose and lignocellulose with regard to the (structural and chemical) effects and impact on the future of pretreatment methods.
Collapse
Affiliation(s)
- Jens Vanneste
- Materials Department, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200f, 3001, Heverlee, Belgium
| | - Thijs Ennaert
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200f, 3001, Heverlee, Belgium
| | - Annick Vanhulsel
- Materials Department, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Bert Sels
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200f, 3001, Heverlee, Belgium
| |
Collapse
|
20
|
Lanzafame P, Perathoner S, Centi G, Gross S, Hensen EJM. Grand challenges for catalysis in the Science and Technology Roadmap on Catalysis for Europe: moving ahead for a sustainable future. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01067b] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This perspective discusses the general concepts that will guide future catalysis and related grand challenges based on the Science and Technology Roadmap on Catalysis for Europe prepared by the European Cluster on Catalysis.
Collapse
Affiliation(s)
- P. Lanzafame
- Dept.s ChiBioFarAm and MIFT – Chimica Industriale
- University of Messina (Italy)
- INSTM/CASPE and ERIC aisbl
- 98166 Messina
- Italy
| | - S. Perathoner
- Dept.s ChiBioFarAm and MIFT – Chimica Industriale
- University of Messina (Italy)
- INSTM/CASPE and ERIC aisbl
- 98166 Messina
- Italy
| | - G. Centi
- Dept.s ChiBioFarAm and MIFT – Chimica Industriale
- University of Messina (Italy)
- INSTM/CASPE and ERIC aisbl
- 98166 Messina
- Italy
| | - S. Gross
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia
- ICMATE-CNR
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
| | - E. J. M. Hensen
- Laboratory of Inorganic Materials Chemistry
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| |
Collapse
|
21
|
Cucciniello R, Ricciardi M, Vitiello R, Di Serio M, Proto A, Capacchione C. Synthesis of Monoalkyl Glyceryl Ethers by Ring Opening of Glycidol with Alcohols in the Presence of Lewis Acids. CHEMSUSCHEM 2016; 9:3272-3275. [PMID: 27880034 DOI: 10.1002/cssc.201600989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/10/2016] [Indexed: 06/06/2023]
Abstract
The present work deals with the production of monoalkyl glyceryl ethers (MAGEs) through a new reaction pathway based on the reaction of glycidol and alcohols catalyzed by Lewis acid-based catalysts. Glycidol is quantitatively converted with high selectivity (99 %) into MAGEs under very mild reaction conditions (80 °C and 0.01 mol % catalyst loading) in only 1 h using Al(OTf)3 or Bi(OTf)3 as catalyst. The proposed method enhances the choice of possible green synthetic approaches for the production of value-added products such as MAGEs.
Collapse
Affiliation(s)
- Raffaele Cucciniello
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
| | - Maria Ricciardi
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
| | - Rosa Vitiello
- Department of Chemical Sciences, University of Naples "Federico II", Via Cinthia 4, 80126, Naples, Italy
| | - Martino Di Serio
- Department of Chemical Sciences, University of Naples "Federico II", Via Cinthia 4, 80126, Naples, Italy
| | - Antonio Proto
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
| | - Carmine Capacchione
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
| |
Collapse
|
22
|
Ampelli C, Barbera K, Centi G, Genovese C, Papanikolaou G, Perathoner S, Schouten K, van der Waal J. On the nature of the active sites in the selective oxidative esterification of furfural on Au/ZrO 2 catalysts. Catal Today 2016. [DOI: 10.1016/j.cattod.2016.04.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
|
24
|
Russo D, Rea G, Lambreva MD, Haertlein M, Moulin M, De Francesco A, Campi G. Water Collective Dynamics in Whole Photosynthetic Green Algae as Affected by Protein Single Mutation. J Phys Chem Lett 2016; 7:2429-2433. [PMID: 27300078 DOI: 10.1021/acs.jpclett.6b00949] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the context of the importance of water molecules for protein function/dynamics relationship, the role of water collective dynamics in Chlamydomonas green algae carrying both native and mutated photosynthetic proteins has been investigated by neutron Brillouin scattering spectroscopy. Results show that single point genetic mutation may notably affect collective density fluctuations in hydrating water providing important insight on the transmission of information possibly correlated to biological functionality. In particular, we highlight that the damping factor of the excitations is larger in the native compared to the mutant algae as a signature of a different plasticity and structure of the hydrogen bond network.
Collapse
Affiliation(s)
- Daniela Russo
- CNR Istituto Officina dei Materiali c/o Institut Laue Langevin , 38042 Grenoble, France
- Institut Lumière Matière, Université de Lyon 1 , 69100 Lyon, France
| | - Giuseppina Rea
- CNR Istituto di Crystallografia 00015 Monterotondo Scalo, 70126 Roma, Italy
| | - Maya D Lambreva
- CNR Istituto di Crystallografia 00015 Monterotondo Scalo, 70126 Roma, Italy
| | - Michael Haertlein
- ILL Deuteration Laboratory, Partnership for Structural Biology, 38042 Grenoble, France
- Life Sciences Group, Institut Laue-Langevin , 38000 Grenoble, France
| | - Martine Moulin
- ILL Deuteration Laboratory, Partnership for Structural Biology, 38042 Grenoble, France
- Life Sciences Group, Institut Laue-Langevin , 38000 Grenoble, France
| | - Alessio De Francesco
- CNR Istituto Officina dei Materiali c/o Institut Laue Langevin , 38042 Grenoble, France
| | - Gaetano Campi
- CNR Istituto di Crystallografia 00015 Monterotondo Scalo, 70126 Roma, Italy
| |
Collapse
|
25
|
Barbera K, Lanzafame P, Perathoner S, Centi G, Migliori M, Aloise A, Giordano G. HMF etherification using NH4-exchanged zeolites. NEW J CHEM 2016. [DOI: 10.1039/c5nj03461b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reversible dissociation of NH4+ ions in the intra-cages of zeolites is correlated with their catalytic reactivity for HMF etherification.
Collapse
Affiliation(s)
- Katia Barbera
- University of Messina
- Section Industrial Chemistry
- ERIC aisbl and CASPE-INSTM
- 98166 Messina
- Italy
| | - Paola Lanzafame
- University of Messina
- Section Industrial Chemistry
- ERIC aisbl and CASPE-INSTM
- 98166 Messina
- Italy
| | - Siglinda Perathoner
- University of Messina
- Section Industrial Chemistry
- ERIC aisbl and CASPE-INSTM
- 98166 Messina
- Italy
| | - Gabriele Centi
- University of Messina
- Section Industrial Chemistry
- ERIC aisbl and CASPE-INSTM
- 98166 Messina
- Italy
| | - Massimo Migliori
- Department of Environmental and Chemical Engineering
- University of Calabria
- 87036 Rende
- Italy
| | - Alfredo Aloise
- Department of Environmental and Chemical Engineering
- University of Calabria
- 87036 Rende
- Italy
| | - Girolamo Giordano
- Department of Environmental and Chemical Engineering
- University of Calabria
- 87036 Rende
- Italy
| |
Collapse
|
26
|
Abate S, Barbera K, Centi G, Lanzafame P, Perathoner S. Disruptive catalysis by zeolites. Catal Sci Technol 2016. [DOI: 10.1039/c5cy02184g] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emerging concepts and novel possibilities in catalysis by zeolites for a new scenario in chemical and energy vector production.
Collapse
Affiliation(s)
- S. Abate
- University of Messina - Sect. Industrial Chemistry
- ERIC aisbl and CASPE/INSTM
- 98166 Messina
- Italy
| | - K. Barbera
- University of Messina - Sect. Industrial Chemistry
- ERIC aisbl and CASPE/INSTM
- 98166 Messina
- Italy
| | - G. Centi
- University of Messina - Sect. Industrial Chemistry
- ERIC aisbl and CASPE/INSTM
- 98166 Messina
- Italy
| | - P. Lanzafame
- University of Messina - Sect. Industrial Chemistry
- ERIC aisbl and CASPE/INSTM
- 98166 Messina
- Italy
| | - S. Perathoner
- University of Messina - Sect. Industrial Chemistry
- ERIC aisbl and CASPE/INSTM
- 98166 Messina
- Italy
| |
Collapse
|