1
|
Wei J, Zhu M, Liu B, Wang N, Liu J, Tomishige K, Liu S, Liu G. Hydrodeoxygenation of Oxygen-Containing Aromatic Plastic Wastes to Liquid Organic Hydrogen Carriers. Angew Chem Int Ed Engl 2023; 62:e202310505. [PMID: 37534570 DOI: 10.1002/anie.202310505] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
To address the global plastic pollution issues and the challenges of hydrogen storage and transportation, we report a system, based on the hydrodeoxygenation (HDO) of oxygen-containing aromatic plastic wastes, from which organic hydrogen carriers (LOHCs) can be derived. We developed a catalytic system comprised of Ru-ReOx /SiO2 +HZSM-5 for direct HDO of polycarbonate (PC), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyphenylene oxide (PPO), and their mixtures, to cycloalkanes as LOHCs, with high yields up to 99 %, under mild reaction conditions. The theoretical hydrogen storage capacity reaches ca. 5.74 wt%. The reaction pathway involves depolymerization of PC into C15 aromatics and C15 monophenols by direct hydrogenolysis of the C-O bond between the benzene ring and ester group, and subsequent parallel hydrogenation of C15 aromatics and HDO of C15 monophenols. HDO of cyclic alcohol is the rate-determining step. The active site is Ru metallic nanoparticles with partially covered ReOx species. The excellent performance is attributed to the synergetic effect of oxophilic ReOx species and Ru metallic sites for C-O hydrogenolysis and hydrogenation, and the promotion effect of HZSM-5 for dehydration of cyclic alcohol. The highly efficient and stable dehydrogenation of cycloalkanes over Pt/γ-Al2 O3 confirms that HDO products can act as LOHCs.
Collapse
Affiliation(s)
- Junde Wei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin, 300072, China
| | - Mengmeng Zhu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin, 300072, China
| | - Ben Liu
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Nan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin, 300072, China
| | - Jieyi Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin, 300072, China
| | - Keiichi Tomishige
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Sibao Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin, 300072, China
- Haihe Lab of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Guozhu Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin, 300072, China
- Haihe Lab of Sustainable Chemical Transformations, Tianjin, 300192, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China
| |
Collapse
|
2
|
Liu Y, Gu C, Chen L, Zhou W, Liao Y, Wang C, Ma L. Ru-MnO x Interaction for Efficient Hydrodeoxygenation of Levulinic Acid and Its Derivatives. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4184-4193. [PMID: 36626197 DOI: 10.1021/acsami.2c22045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-oxide interaction was widely observed in supported metal catalysts, playing a significant role in tuning the catalytic performance. Here, we reported that the interaction of Ru and MnOx was able to facilitate the hydrodeoxygenation of levulinic acid (LA) to 2-butanol with a high turnover frequency (1.99 × 106 h-1), turnover number (4411), and yield (98.8%). Moreover, this catalyst was capable of removing the hydroxymethyl group of lactones and diol with high yields of products. The high activity of the Ru-MnOx catalyst was due to the strong Ru-MnOx interaction, which facilitated reduction of Ru oxide to Ru0 and Mn oxide to Mn2+. The increased fractions of Ru0 and Mn2+ provided metal and Lewis acid sites, respectively, and therefore facilitated LA hydrodeoxygenation. A linear correlation between the hydrodeoxygenation activity of the Ru-MnOx catalyst and [Mn2+]ln([Ru0]) was observed.
Collapse
Affiliation(s)
- Yong Liu
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang330031PR China
| | - Canshuo Gu
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, PR China
| | - Lungang Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing210096, PR China
| | - Wenguang Zhou
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang330031PR China
| | - Yuhe Liao
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, PR China
| | - Chenguang Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, PR China
| | - Longlong Ma
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing210096, PR China
| |
Collapse
|
3
|
Liu B, Nakagawa Y, Li C, Yabushita M, Tomishige K. Selective C–O Hydrogenolysis of Terminal C–OH Bond in 1,2-Diols over Rutile-Titania-Supported Iridium-Iron Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Ben Liu
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Congcong Li
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Mizuho Yabushita
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
4
|
Antunes MM, Silva AF, Fernandes A, Valente AA. γ-Valerolactone synthesis from α-angelica lactone and levulinic acid over biobased multifunctional nanohybrid catalysts. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.08.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Rodiansono, Dewi HP, Mustikasari K, Astuti MD, Husain S, Sutomo. Selective hydroconversion of coconut oil-derived lauric acid to alcohol and aliphatic alkane over MoO x -modified Ru catalysts under mild conditions. RSC Adv 2022; 12:13319-13329. [PMID: 35520112 PMCID: PMC9062712 DOI: 10.1039/d2ra02103j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Molybdenum oxide-modified ruthenium on titanium oxide (Ru-(y)MoO x /TiO2; y is the loading amount of Mo) catalysts show high activity for the hydroconversion of carboxylic acids to the corresponding alcohols (fatty alcohols) and aliphatic alkanes (biofuels) in 2-propanol/water (4.0/1.0 v/v) solvent in a batch reactor under mild reaction conditions. Among the Ru-(y)MoO x /TiO2 catalysts tested, the Ru-(0.026)MoO x /TiO2 (Mo loading amount of 0.026 mmol g-1) catalyst shows the highest yield of aliphatic n-alkanes from hydroconversion of coconut oil derived lauric acid and various aliphatic fatty acid C6-C18 precursors at 170-230 °C, 30-40 bar for 7-20 h. Over Ru-(0.026)MoO x /TiO2, as the best catalyst, the hydroconversion of lauric acid at lower reaction temperatures (130 ≥ T ≤ 150 °C) produced dodecane-1-ol and dodecyl dodecanoate as the result of further esterification of lauric acid and the corresponding alcohols. An increase in reaction temperature up to 230 °C significantly enhanced the degree of hydrodeoxygenation of lauric acid and produced n-dodecane with maximum yield (up to 80%) at 230 °C, H2 40 bar for 7 h. Notably, the reusability of the Ru-(0.026)MoO x /TiO2 catalyst is slightly limited by the aggregation of Ru nanoparticles and the collapse of the catalyst structure.
Collapse
Affiliation(s)
- Rodiansono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University Jl. A. Yani Km 36.0 Banjarbaru South Kalimantan Indonesia.,Catalysis for Sustainable Energy and Environment (CATSuRe), Lambung Mangkurat University Indonesia +625114773112 +625114773112
| | - Heny Puspita Dewi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University Jl. A. Yani Km 36.0 Banjarbaru South Kalimantan Indonesia.,Catalysis for Sustainable Energy and Environment (CATSuRe), Lambung Mangkurat University Indonesia +625114773112 +625114773112
| | - Kamilia Mustikasari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University Jl. A. Yani Km 36.0 Banjarbaru South Kalimantan Indonesia
| | - Maria Dewi Astuti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University Jl. A. Yani Km 36.0 Banjarbaru South Kalimantan Indonesia
| | - Sadang Husain
- Department of Physics, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University Indonesia
| | - Sutomo
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University Indonesia
| |
Collapse
|
6
|
Hacatrjan S, Liu L, Gan J, Nakagawa Y, Cao J, Yabushita M, Tamura M, Tomishige K. Titania-supported molybdenum oxide combined with Au nanoparticles as hydrogen-driven deoxydehydration catalyst of diol compounds. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02144c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heterogenous catalyst for deoxydehydration (DODH) reaction was developed using less expensive Mo than Re as the active center. Combination of Mo with anatase-rich TiO2 and Au as the support...
Collapse
|
7
|
Nakagawa Y, Kuwata A, Yamaguchi K, Tamura M, Yabushita M, Tomishige K. Adsorption of Keggin-Type Polyoxometalates on Rh Metal Particles under Reductive Conditions. Inorg Chem 2021; 60:12413-12424. [PMID: 34323068 DOI: 10.1021/acs.inorgchem.1c01644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The adsorption of POMs on Rh/SiO2 in water solvent under strongly reductive conditions was investigated. Aqueous solutions of α-Keggin type silicotungstate and silicovanadotungstates were mixed with Rh/SiO2 at 393-473 K under 1 MPa of H2. Monovanadium-substituted silicotungstate, α-SiVW11O405- (SiVW11), was more readily adsorbed than nonsubstituted silicotungstate, α-SiW12O404- (SiW12). After adsorption at 433 K, SiVW11 was desorbed from Rh/SiO2 by oxidation with Br2 water without change of the Keggin structure, as evidenced by 51V NMR. Trivanadium-substituted silicotungstate, α-1,2,3-SiV3W9O407-, was not stable, and the desorbed species from Rh/SiO2 by oxidation with Br2 did not maintain the Keggin structure. The very high temperature for adsorption (473 K) also led to the decomposition of the Keggin structure of SiVW11. An increase in the concentration of SiVW11 in the liquid phase gave a saturation of the amount of desorbable SiVW11, up to five SiVW11 anions per one Rh particle with a 3 nm size. The elemental analysis and W L3-edge extended X-ray absorption fine structure of Rh/SiO2 after the adsorption of SiVW11 showed that a part of SiVW11 was decomposed and irreversibly adsorbed as metallic W species incorporated into the surface of Rh metal particles. The amount of decomposed SiVW11 was almost the same as that of SiVW11 adsorbed as the original Keggin structure. The desorbable SiVW11 was probably bonded on the W atom incorporated on the Rh metal particles as the two-electron-reduced form (α-SiVIIIW11O407-).
Collapse
Affiliation(s)
- Yoshinao Nakagawa
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.,Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Ayaka Kuwata
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Kosuke Yamaguchi
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Masazumi Tamura
- Research Center for Artificial Photosynthesis, Advanced Research Institute for Natural Science and Technology, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Mizuho Yabushita
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.,Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|
8
|
Gu M, Liu L, Nakagawa Y, Li C, Tamura M, Shen Z, Zhou X, Zhang Y, Tomishige K. Selective Hydrogenolysis of Erythritol over Ir-ReO x /Rutile-TiO 2 Catalyst. CHEMSUSCHEM 2021; 14:642-654. [PMID: 33084243 DOI: 10.1002/cssc.202002357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Partial hydrogenolysis of erythritol, which can be produced at large scale by fermentation, to 1,4-butanediol (1,4-BuD) is investigated with Ir-ReOx /SiO2 and Ir-ReOx /rutile-TiO2 catalysts. In addition to the higher conversion rate over Ir-ReOx /TiO2 than over Ir-ReOx /SiO2 , which has been also reported for glycerol hydrogenolysis, Ir-ReOx /TiO2 showed higher selectivity to 1,4-BuD than Ir-ReOx /SiO2 , especially at low conversion levels, leading to high 1,4-BuD productivity of 20 mmol1,4-BuD gIr -1 h-1 at 373 K (36 % conversion, 33 % selectivity). The productivity based on the noble metal amount is higher than those reported previously, although the maximum yield of 1,4-BuD (23 %) is not higher than the highest reported values. The reactions of various triols, diols and mono-ols are tested and the selectivity and the reaction rates are compared between catalysts and between substrates. The Ir-ReOx /TiO2 catalyst showed about twofold higher activity than Ir-ReOx /SiO2 in hydrogenolysis of the C-OH bond at the 2- or 3-positions in 1,2- and 1,3-diols, respectively, whereas the hydrogenolysis of C-OH at the 1-position is less promoted by the TiO2 support. Lowering the loading amount of Ir on TiO2 (from 4 wt % to 2 or 1 wt %) decreases the Ir-based activity and 1,4-BuD selectivity. Similarly, increasing the loading amount on SiO2 from 4 wt % to 20 wt % increases the Ir-based activity and 1,4-BuD selectivity, although they remain lower than those for TiO2 -supported catalyst with 4 wt % Ir. High metal loadings on the support seem to be important.
Collapse
Affiliation(s)
- Minyan Gu
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
- College of Environmental Science and Engineering, Institute of New Rural Development, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Lujie Liu
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Congcong Li
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Masazumi Tamura
- Research Center for Artificial Photosynthesis, Advanced Research Institute for Natural Science and Technology, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Zheng Shen
- College of Environmental Science and Engineering, Institute of New Rural Development, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Xuefei Zhou
- College of Environmental Science and Engineering, Institute of New Rural Development, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Yalei Zhang
- College of Environmental Science and Engineering, Institute of New Rural Development, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Keiichi Tomishige
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| |
Collapse
|
9
|
Nakagawa Y, Kasumi T, Ogihara J, Tamura M, Arai T, Tomishige K. Erythritol: Another C4 Platform Chemical in Biomass Refinery. ACS OMEGA 2020; 5:2520-2530. [PMID: 32095676 PMCID: PMC7033684 DOI: 10.1021/acsomega.9b04046] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/27/2020] [Indexed: 05/08/2023]
Abstract
The potential of erythritol as a platform chemical in biomass refinery is discussed in terms of erythritol production and utilization. Regarding erythritol production, fermentation of sugar or starch has been already commercialized. The shift of the carbon source from glucose to inexpensive inedible waste glycerol is being investigated, which will decrease the price of erythritol. The carbon-based yield of erythritol from glycerol is comparable to or even higher than that from glucose. The metabolic pathway of erythritol biosynthesis has become clarified: erythrose-4-phosphate, which is one of the intermediates in the pentose phosphate pathway, is dephosphorylated and reduced to erythritol. The information about the metabolic pathway may give insights to improve the productivity by bleeding. Regarding erythritol utilization, chemical conversions of erythritol, especially deoxygenation, have been investigated in these days. Erythritol is easily dehydrated to 1,4-anhydroerythritol, which can be also used as the substrate for production of useful C4 chemicals. C-O hydrogenolysis and deoxydehydration using heterogeneous catalysts are effective reactions for erythritol/1,4-anhydroerythritol conversion.
Collapse
Affiliation(s)
- Yoshinao Nakagawa
- Department
of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research
Center for Rare Metal and Green Innovation, Tohoku University, 468-1,
Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Takafumi Kasumi
- Applied
Microbiology and Biotechnology Laboratory, College of Bioresource
Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Jun Ogihara
- Applied
Microbiology and Biotechnology Laboratory, College of Bioresource
Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Masazumi Tamura
- Department
of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research
Center for Rare Metal and Green Innovation, Tohoku University, 468-1,
Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Takashi Arai
- Daicel
Corporation, 1-8-23,
Konan, Minato-ku, Tokyo 108-8230, Japan
- Industry-Academia
Collaborative Research Laboratory, Kanazawa
University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Keiichi Tomishige
- Department
of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research
Center for Rare Metal and Green Innovation, Tohoku University, 468-1,
Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|
10
|
Wang T, Nakagawa Y, Tamura M, Okumura K, Tomishige K. Tungsten–zirconia-supported rhenium catalyst combined with a deoxydehydration catalyst for the one-pot synthesis of 1,4-butanediol from 1,4-anhydroerythritol. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00085j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomass-derived 1,4-anhydroerythritol is reduced to 1,4-butanediol over a reusable mixture of heterogeneous catalysts, ReOx–Au/CeO2 and ReOx/WO3–ZrO2.
Collapse
Affiliation(s)
- Tianmiao Wang
- Department of Applied Chemistry
- School of Engineering
- Tohoku University
- Sendai
- Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry
- School of Engineering
- Tohoku University
- Sendai
- Japan
| | - Masazumi Tamura
- Department of Applied Chemistry
- School of Engineering
- Tohoku University
- Sendai
- Japan
| | - Kazu Okumura
- Department of Applied Chemistry
- Faculty of Engineering
- Kogakuin University
- Tokyo 192-0015
- Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry
- School of Engineering
- Tohoku University
- Sendai
- Japan
| |
Collapse
|
11
|
Liu S, Zheng W, Fu J, Alexopoulos K, Saha B, Vlachos DG. Molybdenum Oxide-Modified Iridium Catalysts for Selective Production of Renewable Oils for Jet and Diesel Fuels and Lubricants. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02693] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sibao Liu
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States
| | - Weiqing Zheng
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States
| | - Jiayi Fu
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Konstantinos Alexopoulos
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Basudeb Saha
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States
| | - Dionisios G. Vlachos
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
12
|
Shi H. Valorization of Biomass‐derived Small Oxygenates: Kinetics, Mechanisms and Site Requirements of H2‐involved Hydrogenation and Deoxygenation Pathways over Heterogeneous Catalysts. ChemCatChem 2019. [DOI: 10.1002/cctc.201801828] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui Shi
- Department of Chemistry, Catalysis Research CenterTechnical University Munich Lichtenbergstrasse 4 85747 Garching Germany
| |
Collapse
|
13
|
Tomishige K, Tamura M, Nakagawa Y. CO
2
Conversion with Alcohols and Amines into Carbonates, Ureas, and Carbamates over CeO
2
Catalyst in the Presence and Absence of 2‐Cyanopyridine. CHEM REC 2018; 19:1354-1379. [DOI: 10.1002/tcr.201800117] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/07/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Keiichi Tomishige
- Department of Applied Chemistry, Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai, 980-8579 Japan
| | - Masazumi Tamura
- Department of Applied Chemistry, Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai, 980-8579 Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai, 980-8579 Japan
| |
Collapse
|
14
|
Liu S, Tamura M, Shen Z, Zhang Y, Nakagawa Y, Tomishige K. Hydrogenolysis of glycerol with in-situ produced H 2 by aqueous-phase reforming of glycerol using Pt-modified Ir-ReO x /SiO 2 catalyst. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.07.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Zhang K, Li XL, Chen SY, Xu HJ, Deng J, Fu Y. Selective Hydrogenolysis of Furfural Derivative 2-Methyltetrahydrofuran into Pentanediol Acetate and Pentanol Acetate over Pd/C and Sc(OTf) 3 Cocatalytic System. CHEMSUSCHEM 2018; 11:726-734. [PMID: 29372624 DOI: 10.1002/cssc.201702073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/30/2017] [Indexed: 05/16/2023]
Abstract
It is of great significance to convert platform molecules and their derivatives into high value-added alcohols, which have multitudinous applications. This study concerns systematic conversion of 2-methyltetrahydrofuran (MTHF), which is obtained from furfural, into 1-pentanol acetate (PA) and 1,4-pentanediol acetate (PDA). Reaction parameters, such as the Lewis acid species, reaction temperature, and hydrogen pressure, were investigated in detail. 1 H NMR spectroscopy and reaction dynamics study were also conducted to help clarify the reaction mechanism. Results suggested that cleavage of the primary alcohol acetate was less facile than that of the secondary alcohol acetate, with the main product being PA. A PA yield of 91.8 % (150 °C, 3 MPa H2 , 30 min) was achieved by using Pd/C and Sc(OTf)3 as a cocatalytic system and an 82 % yield of PDA was achieved (150 °C, 30 min) by using Sc(OTf)3 catalyst. Simultaneously, the efficient conversion of acetic esters into alcohols by simple saponification was carried out and led to a good yield.
Collapse
Affiliation(s)
- Kun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui, Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Xing-Long Li
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui, Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shi-Yan Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui, Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Hua-Jian Xu
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Jin Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui, Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui, Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
16
|
Gumina B, Mauriello F, Pietropaolo R, Galvagno S, Espro C. Hydrogenolysis of sorbitol into valuable C3-C2 alcohols at low H2 pressure promoted by the heterogeneous Pd/Fe3O4 catalyst. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2017.12.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Tamura M, Arai T, Nakagawa Y, Tomishige K. Transformation of Diols to Ketones via Intramolecular Borrowing Hydrogen Mechanism. CHEM LETT 2017. [DOI: 10.1246/cl.170498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masazumi Tamura
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579
| | - Takahiro Arai
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579
| | - Keiichi Tomishige
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579
| |
Collapse
|
18
|
Said A, Da Silva Perez D, Perret N, Pinel C, Besson M. Selective C−O Hydrogenolysis of Erythritol over Supported Rh-ReO
x
Catalysts in the Aqueous Phase. ChemCatChem 2017. [DOI: 10.1002/cctc.201700260] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Achraf Said
- Univ Lyon, Univ Claude Bernard; CNRS, IRCELYON, UMR5256; 2 Avenue Albert Einstein, F- 69626 Villeurbanne France
| | | | - Noémie Perret
- Univ Lyon, Univ Claude Bernard; CNRS, IRCELYON, UMR5256; 2 Avenue Albert Einstein, F- 69626 Villeurbanne France
| | - Catherine Pinel
- Univ Lyon, Univ Claude Bernard; CNRS, IRCELYON, UMR5256; 2 Avenue Albert Einstein, F- 69626 Villeurbanne France
| | - Michèle Besson
- Univ Lyon, Univ Claude Bernard; CNRS, IRCELYON, UMR5256; 2 Avenue Albert Einstein, F- 69626 Villeurbanne France
| |
Collapse
|
19
|
Sandbrink L, Beckerle K, Meiners I, Liffmann R, Rahimi K, Okuda J, Palkovits R. Supported Molybdenum Catalysts for the Deoxydehydration of 1,4-Anhydroerythritol into 2,5-Dihydrofuran. CHEMSUSCHEM 2017; 10:1375-1379. [PMID: 28165202 DOI: 10.1002/cssc.201700010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/03/2017] [Indexed: 05/23/2023]
Abstract
Efficient deoxygenation strategies are crucial for the valorization of renewable feedstocks. Deoxydehydration (DODH) enables the direct transformation of two adjacent hydroxyl groups into a double bond. Supported molybdenum-based catalysts were utilized for the first time in DODH. MoOx /TiO2 showed superior catalytic activity compared to common molybdenum salts. The catalyst efficiently converted 1,4-anhydroerythritol into 2,5-dihydrofuran in the presence of 3-octanol as reducing agent, showing high reproducibility and stability.
Collapse
Affiliation(s)
- Lennart Sandbrink
- Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, Aachen, 52074, Germany
| | - Klaus Beckerle
- Institut für Anorganische Chemie, RWTH Aachen University, Aachen, 52074, Germany
| | - Isabell Meiners
- Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, Aachen, 52074, Germany
| | - Rebecca Liffmann
- Institut für Anorganische Chemie, RWTH Aachen University, Aachen, 52074, Germany
| | - Khosrow Rahimi
- DWI-Leibniz-Institute for Interactive Materials, Aachen, 52074, Germany
| | - Jun Okuda
- Institut für Anorganische Chemie, RWTH Aachen University, Aachen, 52074, Germany
| | - Regina Palkovits
- Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, Aachen, 52074, Germany
| |
Collapse
|
20
|
Sheng X, Li N, Li G, Wang W, Wang A, Cong Y, Wang X, Zhang T. Direct Synthesis of Renewable Dodecanol and Dodecane with Methyl Isobutyl Ketone over Dual-Bed Catalyst Systems. CHEMSUSCHEM 2017; 10:825-829. [PMID: 28032695 DOI: 10.1002/cssc.201601563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/26/2016] [Indexed: 06/06/2023]
Abstract
For the first time, we demonstrated two integrated processes for the direct synthesis of dodecanol or 2,4,8-trimethylnonane (a jet fuel range C12 -branched alkane) using methyl isobutyl ketone (MIBK) that can be derived from lignocellulose. The reactions were carried out in dual-bed continuous flow reactors. In the first bed, MIBK was selectively converted to a mixture of C12 alcohol and ketone. Over the Pd-modified magnesium- aluminium hydrotalcite (Pd-MgAl-HT) catalyst, a high total carbon yield (73.0 %) of C12 oxygenates can be achieved under mild conditions. In the second bed, the C12 oxygenates generated in the first bed were hydrogenated to dodecanol over a Ru/C catalyst or hydrodeoxygenated to 2,4,8-trimethylnonane over a Cu/SiO2 catalyst. The as-obtained dodecanol can be used as feedstock in the production of sodium dodecylsulfate (SDS) and sodium dodecyl benzene sulfonate (SDBS), which are widely used as surfactants or detergents. The asobtained 2,4,8-trimethylnonane can be blended into conventional jet fuel without hydroisomerization.
Collapse
Affiliation(s)
- Xueru Sheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing, 10049, P.R. China
| | - Ning Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Guangyi Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Wentao Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Aiqin Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Yu Cong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Xiaodong Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Tao Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| |
Collapse
|