1
|
Zhao X, Kang S, Zhang H, Yang H, Dou M, Zhao H, Li D, Dou J. Highly efficient binuclear cobalt-bis(4-methylthiosemicarbazone) complex co-catalyst to support Cd0.5Zn0.5S NPs for enhanced photocatalytic hydrogen evolution. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
2
|
Linkage-Affected Donor–Acceptor Covalent Organic Frameworks for Photocatalytic Hydrogen Production. Processes (Basel) 2023. [DOI: 10.3390/pr11020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The depletion of traditional fossil energy and the resulting environmental pollution forces people to explore new energy sources. Direct use of solar energy is now a viable solution for solving these problems. Covalent organic frameworks (COFs) are a porous crystalline material; their well-defined two-dimensional or three-dimensional frameworks can ensure the orderly arrangement of photoelectric active units, giving them potential photoelectric conversion applications. The tunable structural features endow COFs many advantages in photocatalytic hydrogen production under visible light. This review comprehensively summarizes the research progress on photoelectronic donor–acceptor (D-A) COFs with tunable structure for photocatalytic hydrogen evolution and will provide a feasible guiding strategy for applying this type of COFs in photocatalytic hydrogen production.
Collapse
|
3
|
Zhou W, Deng QW, He HJ, Yang L, Liu TY, Wang X, Zheng DY, Dai ZB, Sun L, Liu C, Wu H, Li Z, Deng WQ. Heterogenization of Salen Metal Molecular Catalysts in Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2023; 62:e202214143. [PMID: 36401588 DOI: 10.1002/anie.202214143] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Integrating a molecular catalyst with a light harvester into a photocatalyst is an effective strategy for solar light conversion. However, it is challenging to establish a crystallized framework with well-organized connections that favour charge separation and transfer. Herein, we report the heterogenization of a Salen metal complex molecular catalyst into a rigid covalent organic framework (COF) through covalent linkage with the light-harvesting unit of pyrene for photocatalytic hydrogen evolution. The chemically conjugated bonds between the two units contribute to fast photogenerated electron transfer and thereby promote the proton reduction reaction. The Salen cobalt-based COF showed the best hydrogen evolution activity (1378 μmol g-1 h-1 ), which is superior to the previously reported nonnoble metal based COF photocatalysts. This work provides a strategy to construct atom-efficient photocatalysts by the heterogenization of molecular catalysts into covalent organic frameworks.
Collapse
Affiliation(s)
- Wei Zhou
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72, Binhai Road, Qingdao, Shandong, 266237, China
| | - Qi-Wen Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72, Binhai Road, Qingdao, Shandong, 266237, China
| | - Hui-Jie He
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72, Binhai Road, Qingdao, Shandong, 266237, China
| | - Li Yang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72, Binhai Road, Qingdao, Shandong, 266237, China
| | - Tian-Yi Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72, Binhai Road, Qingdao, Shandong, 266237, China
| | - Xiao Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72, Binhai Road, Qingdao, Shandong, 266237, China
| | - Dao-Yuan Zheng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72, Binhai Road, Qingdao, Shandong, 266237, China
| | - Zhang-Ben Dai
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Lei Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72, Binhai Road, Qingdao, Shandong, 266237, China
| | - Chengcheng Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72, Binhai Road, Qingdao, Shandong, 266237, China
| | - Hao Wu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72, Binhai Road, Qingdao, Shandong, 266237, China
| | - Zhen Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72, Binhai Road, Qingdao, Shandong, 266237, China
| | - Wei-Qiao Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 72, Binhai Road, Qingdao, Shandong, 266237, China
| |
Collapse
|
4
|
Chang CJ, Chao PY, Chen JK, Pundi A, Yu YH, Chiang CL, Lin YG. Metal Complex/ZnS-Modified Ni Foam as Magnetically Stirrable Photocatalysts: Roles of Redox Mediators and Carrier Dynamics Monitored by Operando Synchrotron X-ray Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41870-41882. [PMID: 36001354 DOI: 10.1021/acsami.2c07857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetically stirrable photocatalysts binding the ZnS-decorated Ni foam with the metal complex cocatalyst as a redox mediator and light-absorbing composition were investigated. Loading metal complex can improve light absorption, surface hydrophilicity, interfacial charge migration, and H2 production activity. The variation of the metal valences of the composite photocatalysts in an operando environment (with sacrificial agent solution) with and without light irradiation was investigated by X-ray absorption near-edge structure (XANES) spectra and Fourier-transformed extended X-ray absorption fine structure (EXAFS) spectra to monitor the charge carrier dynamics of photocatalysis and explain how the macrocyclic Cu complex (CuC) acted as a redox mediator better than the Ni complex. The smaller valence difference of copper valence in ZS/CuC for dark and light states revealed that the Cu complex facilitates a reversible electron transfer between the ZnS photocatalyst and H+. Loading the Cu complex can improve the separation of photogenerated carriers by the redox couple of complexes, leading to a significantly improved photocatalytic H2 production activity of 8150 μmol h-1 g-1. The reactants can flow through these magnetically stirrable Ni foam-based photocatalysts by magnetic-field-driven stirring, which improves the contact between photocatalysts and the sacrificial agents. The operando synchrotron provides new insights for understanding the roles of redox mediators.
Collapse
Affiliation(s)
- Chi-Jung Chang
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan
| | - Pei-Yao Chao
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan
| | - Jem-Kun Chen
- Department of Materials and Science Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 106, Taiwan
| | - Arul Pundi
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan
| | - Yuan-Hsiang Yu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Chao-Lung Chiang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yan-Gu Lin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
6
|
Enhanced photocatalytic H 2 production under visible light on composite photocatalyst (CdS/NiSe nanorods) synthesized in aqueous solution. J Colloid Interface Sci 2019; 557:1-9. [PMID: 31505332 DOI: 10.1016/j.jcis.2019.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 11/20/2022]
Abstract
Cocatalysts play a critical role in the activity and stability of photocatalytic systems. Currently, efficient cocatalysts mainly comprise of expensive noble metals. Herein we report a composite photocatalyst consisting of CdS nanorods (NRs) and noble-metal-free cocatalyst NiSe, which efficiently enhances the hydrogen production activity of CdS NRs under visible light. NiSe was synthesized through a facile aqueous solution method and CdS/NiSe NRs composites were prepared by in situ deposition of NiSe on CdS NRs. This provides increased contact between cocatalyst and photosensitizer leading to enhanced electron transfer at the interface of NiSe and CdS. The current photocatalytic system gave the highest hydrogen evolution rate of 340 µmol h-1 under optimal conditions. The enhanced stability of the system was observed for 30 h of irradiation resulting in 14 mmol of hydrogen evolution. The highest AQY of 12% was observed using the 420 nm monochromatic light. In addition, CdS/NiSe NRs showed significant higher H2 evolution rate than that of 1.0 wt% loaded CdS/Pt NRs proving NiSe as highly efficient cocatalyst. Photoluminescence spectra and the photocurrent response were used to confirm the efficient charge transfer at the interface of NiSe and CdS nanorods. The work presented here demonstrates the successful use of an inexpensive, non-noble-metal cocatalyst for enhanced photocatalytic hydrogen production.
Collapse
|
7
|
Affiliation(s)
- Jiao Deng
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yude Su
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Dong Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
9
|
Tian H, Liang J, Ma X, Cao L, Hu X, Gao M, Yang H, Liang Z. Enhanced Photoelectrocatalytic H
2
Evolution over Two‐Dimensional MoS
2
Nanosheets Loaded on Cu‐Doped CdS Nanorods. ChemElectroChem 2018. [DOI: 10.1002/celc.201801500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Haoyang Tian
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 PR China
| | - Jintao Liang
- Shanxi Survey and Design Institute of Water Conservancy and Hydropower Shanxi Taiyuan 030024 PR China
| | - Xuli Ma
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 PR China
| | - Lele Cao
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 PR China
| | - Xueyan Hu
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 PR China
| | - Mengting Gao
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 PR China
| | - Huimin Yang
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 PR China
| | - Zhenhai Liang
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 PR China
| |
Collapse
|