1
|
Gouda A, Hannouche K, Mohan A, Mao C, Nikbin E, Carrière A, Ye J, Howe JY, Sain M, Hmadeh M, Ozin GA. In-situ restructuring of Ni-based metal organic frameworks for photocatalytic CO 2 hydrogenation. Nat Commun 2025; 16:695. [PMID: 39814724 PMCID: PMC11736132 DOI: 10.1038/s41467-025-55891-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
As the global quest for sustainable energy keeps rising, exploring novel efficient and practical photocatalysts remains a research and industrial urge. Particularly, metal organic frameworks were proven to contribute to various stages of the carbon cycle, from CO2 capture to its conversion. Herein, we report the photo-methanation activity of three isostructural, nickel-based metal organic frameworks incorporating additional niobium, iron, and aluminum sites, having demonstrated exceptional CO2 capture abilities from thin air in previous reports. The niobium version exhibits the highest performance, with a CO2 to CH4 conversion rate in the order of 750-7500 µmol*gcatalyst-1*h-1 between 180 °C and 240 °C, achieving 97% selectivity under light irradiation and atmospheric pressure. The in-depth characterization of this framework before and after catalysis reveals the occurrence of an in-situ restructuring process, whereas active surface species are formed under photocatalytic conditions, thus providing comprehensive structure-performance correlations for the development of efficient CO2 conversion photocatalysts.
Collapse
Affiliation(s)
- Abdelaziz Gouda
- Department of Chemistry, University of Toronto, Toronto, ON, Canada.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.
| | - Karen Hannouche
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Abhinav Mohan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Chengliang Mao
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Ehsan Nikbin
- Department of Materials Science & Engineering, University of Toronto, Toronto, Canada
| | - Alexandre Carrière
- Department of Engineering Physics, Polytechnique Montreal, Montreal, QC, Canada
| | - Jessica Ye
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Jane Y Howe
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Materials Science & Engineering, University of Toronto, Toronto, Canada
| | - Mohini Sain
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.
| | - Mohamad Hmadeh
- Department of Chemistry, University of Toronto, Toronto, ON, Canada.
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| | - Geoffrey A Ozin
- Department of Chemistry, University of Toronto, Toronto, ON, Canada.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Sharma A, Biswas P, Singh MR. Metal-Organic Framework-Templated Synthesis of Nickel-Alumina Nanocatalysts Improves Catalyst-Support Interaction for Higher Activity and Stability in Biogas Reforming under Controlled Oxidizing Conditions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67620-67634. [PMID: 39589021 DOI: 10.1021/acsami.4c12538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Tri-reforming methane with CO2, O2, and H2O mixtures requires a delicate balance of dry-reforming, partial oxidation, and steam-reforming reactions to improve the CO2 conversion and H2/CO ratio. Nickel-alumina has been reported before for the tri-reforming of methane, although at higher temperatures (>900 °C). This is because the current approaches for nickel-alumina synthesis are ineffective in generating stronger catalyst-support interactions necessary to maintain higher active sites and stall carbon nanotube (CNT) deposition. Here, we report a synthesis method that allows controlled loading of nickel on alumina-based MIL-53 metal-organic framework followed by calcination to generate 2.5-10 wt % nickel nanoparticles dispersed on alumina. The 5 wt % nickel-alumina mixtures resulted in nanometer-sized crystallites, better metal dispersion, and more active sites for enhanced catalytic activity. This optimal loading of nickel allows stronger interaction with alumina for over 100 h of stable performance of tri-reforming at 800 °C, achieving ∼98% CH4 conversion, ∼36% CO2 conversion, and no carbon deposition while producing Fischer-Tropsch-ready feed containing a H2/CO ratio of 3.2.
Collapse
Affiliation(s)
- Arisha Sharma
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Prakash Biswas
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Meenesh R Singh
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
3
|
Singh G, Panda S, Sapan S, Singh J, Chandewar PR, Biradar AV, Shee D, Bordoloi A. Polyoxometalate-HKUST-1 composite derived nanostructured Na-Cu-Mo 2C catalyst for efficient reverse water gas shift reaction. NANOSCALE 2024; 16:14066-14080. [PMID: 38995159 DOI: 10.1039/d4nr01185f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Transforming CO2 to CO via reverse water-gas shift (RWGS) reaction is widely regarded as a promising technique for improving the efficiency and economics of CO2 utilization processes. Moreover, it is also considered as a pathway towards e-fuels. Cu-oxide catalysts are widely explored for low-temperature RWGS reactions; nevertheless, they tend to deactivate significantly under applied reaction conditions due to the agglomeration of copper particles at elevated temperatures. Herein, we have synthesized homogeneously distributed Cu metallic nanoparticles supported on Mo2C for the RWGS reaction by a unique approach of in situ carburization of metal-organic frameworks (MOFs) using a Cu-based MOF i.e. HKUST-1 encapsulating molybdenum-based polyoxometalates. The newly derived Na-Cu-Mo2C nanocomposite catalyst system exhibits excellent catalytic performance with a CO production rate of 3230.0 mmol gcat-1 h-1 with 100% CO selectivity. Even after 250 h of a stability test, the catalyst remained active with more than 80% of its initial activity.
Collapse
Affiliation(s)
- Gaje Singh
- Light and Stock Processing Division, CSIR-Indian Institute of Petroleum (IIP), Dehradun-248005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Satyajit Panda
- Light and Stock Processing Division, CSIR-Indian Institute of Petroleum (IIP), Dehradun-248005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Siddharth Sapan
- Light and Stock Processing Division, CSIR-Indian Institute of Petroleum (IIP), Dehradun-248005, India.
| | - Jogender Singh
- Light and Stock Processing Division, CSIR-Indian Institute of Petroleum (IIP), Dehradun-248005, India.
| | | | - Ankush V Biradar
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar-364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Debaprasad Shee
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad 502284, India
| | - Ankur Bordoloi
- Light and Stock Processing Division, CSIR-Indian Institute of Petroleum (IIP), Dehradun-248005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
4
|
Liu F, Deng H, Wang Z, Hussain AM, Dale N, Furuya Y, Miura Y, Fukuyama Y, Ding H, Liu B, Duan C. Synergistic Effects of In-Situ Exsolved Ni-Ru Bimetallic Catalyst on High-Performance and Durable Direct-Methane Solid Oxide Fuel Cells. J Am Chem Soc 2024; 146:4704-4715. [PMID: 38277126 DOI: 10.1021/jacs.3c12121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Direct-methane solid oxide fuel cells (CH4-SOFCs) have gained significant attention as methane, the primary component of natural gas (NG), is cheap and widely available and the natural gas infrastructures are relatively mature. However, at intermediate temperatures (e.g., 600-650 °C), current CH4-SOFCs suffer from low performance and poor durability under a low steam-to-carbon ratio (S/C ratio), which is ascribed to the Ni-based anode that is of low catalytic activity and prone to coking. Herein, with the guidance of density functional theory (DFT) studies, a highly active and coking tolerant steam methane reforming (SMR) catalyst, Sm-doped CeO2-supported Ni-Ru (SCNR), was developed. The synergy between Ni and Ru lowers the activation energy of the first C-H bond activation and promotes CHx decomposition. Additionally, Sm doping increases the oxygen vacancy concentration in CeO2, facilitating H2O adsorption and dissociation. The SCNR can therefore simultaneously activate both CH4 and H2O molecules while oxidizing the CH* and improving coking tolerance. We then applied SCNR as the CH4-SOFC anode catalytic reforming layer. A peak power density of 733 mW cm-2 was achieved at 650 °C, representing a 55% improvement compared to that of pristine CH4-SOFCs (473 mW cm-2). Moreover, long-term durability testing, with >2000 h continuous operation, was performed under almost dry methane (5% H2O). These results highlight that CH4-SOFCs with a SCNR catalytic layer can convert NG to electricity with high efficiency and resilience.
Collapse
Affiliation(s)
- Fan Liu
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Hao Deng
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Zixian Wang
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | | | - Nilesh Dale
- Nissan Technical Centre North America (NTCNA), Farmington Hills, Michigan 48331, United States
| | - Yoshihisa Furuya
- Nissan Technical Centre North America (NTCNA), Farmington Hills, Michigan 48331, United States
| | - Yohei Miura
- Nissan Research Center, Nissan Motor Company Limited, Yokosuka, Kanagawa 2378523, Japan
| | - Yosuke Fukuyama
- Nissan Research Center, Nissan Motor Company Limited, Yokosuka, Kanagawa 2378523, Japan
| | - Hanping Ding
- Department of Aerospace & Mechanical Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Bin Liu
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Chuancheng Duan
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
5
|
Rodríguez C, Moreno S, Molina R. Operando DRIFT-MS for studying the oxidative steam reforming of ethanol (OSRE) reaction. MethodsX 2023; 10:102169. [PMID: 37122362 PMCID: PMC10133750 DOI: 10.1016/j.mex.2023.102169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
An operando DRIFT-MS system (Diffuse Reflectance Infrared Fourier Transform Spectroscopy coupled with Mass Spectrometry) was designed and set up to study the oxidative steam reforming of ethanol reaction (OSRE). This reaction involves the mixture of water, ethanol and oxygen to produce mainly hydrogen, which is a rather attractive energy carrier. Spectroscopic monitoring of the process is a key tool to contribute to the understanding of: i) the dynamics on the catalyst surface, ii) the reaction mechanism and iii) the effect of the solid's properties on the catalytic process. In this sense, this document sets forth the experimental design that allows to carry out the study under operando DRIFT-MS conditions through time for the OSRE reaction. Selection criteria for parameters, materials, configuration, and experimental conditions are included, particularly optimizing the parameters of particle size and the dilution factor with KBr as well as the temperature and flow conditions for carrying out the reaction.•Clear signals of the adsorbed species in IR that do not present interference by water in the reaction atmosphere.•Simple assembly and online product detection by MS that allow to follow the change in the products of the OSRE reaction according to the temperature.•Controlled entry of gases and quantification by loop injection.
Collapse
|
6
|
Du Z, Petru C, Yang X, Chen F, Fang S, Pan F, Gang Y, Zhou HC, Hu YH, Li Y. Development of stable La0.9Ce0.1NiO3 perovskite catalyst for enhanced photothermochemical dry reforming of methane. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Effect of platinum addition on the reaction mechanism of the CO2 methanation catalyzed by ZrO2-supported Rh. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Steam reforming of ethanol, acetaldehyde, acetone and acetic acid: Understanding the reaction intermediates and nature of coke. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Rodriguez JA, Rui N, Zhang F, Senanayake SD. In Situ Studies of Methane Activation Using Synchrotron-Based Techniques: Guiding the Conversion of C–H Bonds. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- José A. Rodriguez
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Materials Science and Chemical Engineering, SUNY at Stony Brook, Stony Brook, New York 11794, United States
| | - Ning Rui
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Feng Zhang
- Department of Materials Science and Chemical Engineering, SUNY at Stony Brook, Stony Brook, New York 11794, United States
| | - Sanjaya D. Senanayake
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
10
|
Qi R, An L, Guo Y, Zhang R, Wang ZJ. In Situ Fabrication of Ultrasmall Ni Nanoparticles from Ni(OH)2 Precursors for Efficient CO2 Reforming of Methane. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ronghua Qi
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Lei An
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yu Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Runduo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhou-jun Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
11
|
Guilhaume N, Bianchi D, Wandawa RA, Yin W, Schuurman Y. Study of CO2 and H2O adsorption competition in the combined dry / steam reforming of biogas. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.04.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Yang J, Hu S, Shi L, Hoang S, Yang W, Fang Y, Liang Z, Pan C, Zhu Y, Li L, Wu J, Hu J, Guo Y. Oxygen Vacancies and Lewis Acid Sites Synergistically Promoted Catalytic Methane Combustion over Perovskite Oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9243-9254. [PMID: 34106698 DOI: 10.1021/acs.est.1c00511] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An in-depth understanding of the surface properties-activity relationship could provide a fundamental guidance for the design of highly efficient perovskite-based catalysts for the control of anthropogenic methane emission. Herein, both oxygen vacancies and Con+ Lewis acid sites were purposely introduced on ordered macroporous La0.8Sr0.2CoO3 monolithic catalysts by one-step reduction and selective etching in oxalic acid, and their synergistic effect on methane combustion was investigated. Combined with experimental and theoretical investigations, we revealed that the positively charged Con+ Lewis acid sites and single-electron-trapped oxygen vacancies (Vo·) formed an active pair, which enabled an effective localized electron cloud shift from Vo· to Con+. The characteristic electronic effect modulates surface electronic properties and coordination structures, thus resulting in superior oxygen activation capacity, lattice oxygen mobility, and reducibility, as well as favorable CH4 interaction and oxidation. Our work not only gives insights into surface properties-activity relationships on perovskite for hydrocarbon combustion but also sheds substantial light on future environmental catalyst design and modulation for hydrocarbon pollutants elimination.
Collapse
Affiliation(s)
- Ji Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Siyu Hu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Limin Shi
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Son Hoang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Weiwei Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Yarong Fang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zhenfeng Liang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Chuanqi Pan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Yuhua Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Li Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Jian Wu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Jinpeng Hu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
13
|
Coking-resistant dry reforming of methane over Ni/γ-Al 2O 3 catalysts by rationally steering metal-support interaction. iScience 2021; 24:102747. [PMID: 34278257 PMCID: PMC8261659 DOI: 10.1016/j.isci.2021.102747] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
The coking issue is the main challenge for dry reforming of methane (DRM) over Ni-based catalysts. Herein, we excavate the reasons for the enhanced coking resistance of the bounded Ni over the free state Ni in Ni/γ-Al2O3 catalysts for DRM. Rational metal-support interaction of the bounded Ni would facilitate desorption of CO, thus suppressing CO disproportionation and decreasing carbon deposition. The higher activity of the bounded Ni is ascribed to better methane cracking ability, stronger adsorption, and activation of CO2 by forming polydentate carbonate. The better activation of CO2 over the bounded Ni would also contribute to the gasification of formed coke. We gain an insight into the anti-coking mechanism of DRM determined by metal-support interaction in Ni/γ-Al2O3 catalysts through mechanistic studies. It is believed that our findings would enlighten the design of more efficient catalysts for DRM. The anti-coking ability of the bounded Ni is better than the free state Ni The bounded Ni has a stronger ability to activate CO2 to produce active O∗ species High reactivity and stable polydentate carbonate enables efficient reaction Rational metal-support interaction results in good resistance to CO poisoning
Collapse
|
14
|
Chen H, Chansai S, Xu S, Xu S, Mu Y, Hardacre C, Fan X. Dry reforming of methane on bimetallic Pt–Ni@CeO 2 catalyst: a in situ DRIFTS-MS mechanistic study. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00382h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bimetallic Pt–Ni catalysts can promote catalytic dry reforming of methane (DRM) with improved activity and deactivation resistance compared to the relevant monometallic catalysts.
Collapse
Affiliation(s)
- Huanhao Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| | - Sarayute Chansai
- Department of Chemical Engineering and Analytical Science
- School of Engineering
- The University of Manchester
- UK
| | - Shaojun Xu
- School of Chemistry
- Cardiff University
- Cardiff
- UK
- UK Catalysis Hub
| | - Shanshan Xu
- Department of Chemical Engineering and Analytical Science
- School of Engineering
- The University of Manchester
- UK
| | - Yibing Mu
- Department of Chemical Engineering and Analytical Science
- School of Engineering
- The University of Manchester
- UK
| | - Christopher Hardacre
- Department of Chemical Engineering and Analytical Science
- School of Engineering
- The University of Manchester
- UK
| | - Xiaolei Fan
- Department of Chemical Engineering and Analytical Science
- School of Engineering
- The University of Manchester
- UK
| |
Collapse
|
15
|
Jantarang S, Lovell EC, Tan TH, Xie B, Scott J, Amal R. Altering the influence of ceria oxygen vacancies in Ni/Ce xSi yO 2 for photothermal CO 2 methanation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00136a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
While the benefit of CeO2 surface oxygen vacancies for CO2 methanation is well established, their role under photothermal conditions has not been probed in depth.
Collapse
Affiliation(s)
- Salina Jantarang
- Particles and Catalysis Research Group
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Emma C. Lovell
- Particles and Catalysis Research Group
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Tze Hao Tan
- Particles and Catalysis Research Group
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Bingqiao Xie
- Particles and Catalysis Research Group
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Jason Scott
- Particles and Catalysis Research Group
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Rose Amal
- Particles and Catalysis Research Group
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
16
|
Guo Y, Li Y, Ning Y, Liu Q, Tian L, Zhang R, Fu Q, Wang ZJ. CO2 Reforming of Methane over a Highly Dispersed Ni/Mg–Al–O Catalyst Prepared by a Facile and Green Method. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02444] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yifan Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yanxiao Ning
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Qiankun Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Long Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Runduo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Zhou-jun Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
17
|
Zhao X, Joseph B, Kuhn J, Ozcan S. Biogas Reforming to Syngas: A Review. iScience 2020; 23:101082. [PMID: 32380422 PMCID: PMC7205767 DOI: 10.1016/j.isci.2020.101082] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 11/24/2022] Open
Abstract
Interest in novel uses of biogas has increased recently due to concerns about climate change and greater emphasis on renewable energy sources. Although biogas is frequently used in low-value applications such as heating and fuel in engines or even just flared, reforming is an emerging strategy for converting biogas to syngas, which could then be used to obtain high-value-added liquid fuels and chemicals. Interest also exists due to the role of dry, bi-, and tri-reforming in the capture and utilization of CO2. New research efforts have explored efficient and effective reforming catalysts, as specifically applied to biogas. In this paper, we review recent developments in dry, bi-, and tri-reforming, where the CO2 in biogas is used as an oxidant/partial oxidant. The synthesis, characterization, lifetime, deactivation, and regeneration of candidate reforming catalysts are discussed in detail. The thermodynamic limitation and techno-economics of biogas conversion are also discussed.
Collapse
Affiliation(s)
- Xianhui Zhao
- Department of Chemical & Biomedical Engineering, University of South Florida, Tampa, FL 33620, USA; Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA.
| | - Babu Joseph
- Department of Chemical & Biomedical Engineering, University of South Florida, Tampa, FL 33620, USA.
| | - John Kuhn
- Department of Chemical & Biomedical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Soydan Ozcan
- Manufacturing Demonstration Facility, Energy and Transportation Science Division, Oak Ridge National Laboratory, Knoxville, TN 37932, USA; Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
18
|
Lu M, Zhang X, Deng J, Kuboon S, Faungnawakij K, Xiao S, Zhang D. Coking-resistant dry reforming of methane over BN–nanoceria interface-confined Ni catalysts. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00537a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Coking-resistant dry reforming of methane over BN–nanoceria interface-confined Ni catalysts was demonstrated.
Collapse
Affiliation(s)
- Meirong Lu
- Department of Chemistry
- Research Center of Nano Science and Technology
- Shanghai University
- Shanghai 200444
- China
| | - Xiaoyu Zhang
- Department of Chemistry
- Research Center of Nano Science and Technology
- Shanghai University
- Shanghai 200444
- China
| | - Jiang Deng
- Department of Chemistry
- Research Center of Nano Science and Technology
- Shanghai University
- Shanghai 200444
- China
| | - Sanchai Kuboon
- National Nanotechnology Center
- National Science and Technology Development Agency
- 111 Thailand Science Park
- Thailand
| | - Kajornsak Faungnawakij
- National Nanotechnology Center
- National Science and Technology Development Agency
- 111 Thailand Science Park
- Thailand
| | - Shengxiong Xiao
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
- P.R. China
| | - Dengsong Zhang
- Department of Chemistry
- Research Center of Nano Science and Technology
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
19
|
Das S, Sengupta M, Bag A, Shah M, Bordoloi A. Facile synthesis of highly disperse Ni-Co nanoparticles over mesoporous silica for enhanced methane dry reforming. NANOSCALE 2018; 10:6409-6425. [PMID: 29561924 DOI: 10.1039/c7nr09625a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A synergistic approach was made to develop a highly stable and carbon resistant catalyst system based on cobalt and nickel supported over modified mesoporous silica for the dry reforming of methane (DRM). Modified mesoporous silica is prepared by a hydrothermal method, and the total Co & Ni composition is taken at around 5% by using the deposition-precipitation technique. CO2 reforming with methane was performed at 400-800 °C under atmospheric pressure as well as at a pressure of 1 MPa, keeping the CH4/CO2 ratio equal to unity. The catalyst assembly before and after the reaction was thoroughly characterized by a wide range of analytical techniques including N2 physisorption, XRD, TPR, TPO, TPH, XPS, SEM, TEM, elemental mapping, TG-DTG. The physicochemical characterization results confirmed the homogeneous distribution of nanosized metal particles into the hexagonal framework of modified silica, which plays a vital role towards a stronger metal support interaction that renders carbon deposition upon the active metal surface as well as avoids metal sintering at higher temperatures. At the same time, the coexistence of nanosized Co and Ni into the mesopores produced a synergy which provides better stability without any deactivation at high pressure reaction conditions. In situ DRIFT analysis evidenced that the reaction proceeds over these catalysts through an initial pathway in which both methane and carbon dioxide initially dissociate over the metal along with a bifunctional pathway in which methane dissociates over the active metal and carbon dioxide activated over the basic support surface via a formate intermediate. Density Functional Theory (DFT) calculations were also performed and further support the proposed mechanism from DRIFT studies.
Collapse
Affiliation(s)
- Subhasis Das
- Refinery Technology Division, CSIR- Indian Institute of Petroleum, Uttarakhand, India.
| | - Manideepa Sengupta
- Refinery Technology Division, CSIR- Indian Institute of Petroleum, Uttarakhand, India.
| | - Arijit Bag
- Chemical Science Division, IISER Kolkata, Mohanpur, Nadia, West Bengal, India
| | - Mumtaj Shah
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, India
| | - Ankur Bordoloi
- Refinery Technology Division, CSIR- Indian Institute of Petroleum, Uttarakhand, India.
| |
Collapse
|
20
|
Bian Z, Kawi S. Sandwich-Like Silica@Ni@Silica Multicore-Shell Catalyst for the Low-Temperature Dry Reforming of Methane: Confinement Effect Against Carbon Formation. ChemCatChem 2017. [DOI: 10.1002/cctc.201701024] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhoufeng Bian
- Department of Chemical and Biomolecular Engineering; National University of Singapore; Singapore 117585 Singapore
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering; National University of Singapore; Singapore 117585 Singapore
| |
Collapse
|