1
|
Zhang Y, Liu Y, Lu Y, Gong S, Haick H, Cheng W, Wang Y. Tailor-Made Gold Nanomaterials for Applications in Soft Bioelectronics and Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405046. [PMID: 39022844 DOI: 10.1002/adma.202405046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/02/2024] [Indexed: 07/20/2024]
Abstract
In modern nanoscience and nanotechnology, gold nanomaterials are indispensable building blocks that have demonstrated a plethora of applications in catalysis, biology, bioelectronics, and optoelectronics. Gold nanomaterials possess many appealing material properties, such as facile control over their size/shape and surface functionality, intrinsic chemical inertness yet with high biocompatibility, adjustable localized surface plasmon resonances, tunable conductivity, wide electrochemical window, etc. Such material attributes have been recently utilized for designing and fabricating soft bioelectronics and optoelectronics. This motivates to give a comprehensive overview of this burgeoning field. The discussion of representative tailor-made gold nanomaterials, including gold nanocrystals, ultrathin gold nanowires, vertically aligned gold nanowires, hard template-assisted gold nanowires/gold nanotubes, bimetallic/trimetallic gold nanowires, gold nanomeshes, and gold nanosheets, is begun. This is followed by the description of various fabrication methodologies for state-of-the-art applications such as strain sensors, pressure sensors, electrochemical sensors, electrophysiological devices, energy-storage devices, energy-harvesting devices, optoelectronics, and others. Finally, the remaining challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yi Liu
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yuerui Lu
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT, 2601, Australia
| | - Shu Gong
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Hossam Haick
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Wenlong Cheng
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| |
Collapse
|
2
|
Kanti Maiti T, Liu W, Niyazi A, Squires AM, Chattpoadhyay S, Di Lorenzo M. Soft-Template-Based Manufacturing of Gold Nanostructures for Energy and Sensing Applications. BIOSENSORS 2024; 14:289. [PMID: 38920593 PMCID: PMC11202093 DOI: 10.3390/bios14060289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
Implantable and wearable bioelectronic systems can enable tailored therapies for the effective management of long-term diseases, thus minimising the risk of associated complications. In this context, glucose fuel cells hold great promise as in- or on-body energy harvesters for ultra-low-power bioelectronics and as self-powered glucose sensors. We report here the generation of gold nanostructures through a gold electrodeposition method in a soft template for the abiotic electrocatalysis of glucose in glucose fuel cells. Two different types of soft template were used: a lipid cubic phase-based soft template composed of Phytantriol and Brij®-56, and an emulsion-based soft template composed of hexane and sodium dodecyl sulphate (SDS). The resulting gold structures were first characterised by SAXS, SEM and TEM to elucidate their structure, and then their electrocatalytic activity towards glucose was compared in both a three-electrode set-up and in a fuel cell set-up. The Phytantriol/Brij®-56 template led to a nanofeather-like Au structure, while the hexane/SDS template led to a nanocoral-like Au structure. These templated electrodes exhibited similar electrochemical active surface areas (0.446 cm2 with a roughness factor (RF) of 14.2 for Phytantriol/Brij®-56 templated nanostructures and 0.421 cm2 with an RF of 13.4 for hexane/SDS templated nanostructures), and a sensitivity towards glucose of over 7 μA mM-1 cm-2. When tested as the anode of an abiotic glucose fuel cell (in a phosphate-buffered solution with a glucose concentration of 6 mM), a maximum power density of 7 μW cm-2 was reached; however the current density in the case of the fuel cell with the Phytantriol/Brij®-56 templated anode was approximately two times higher, reaching the value of 70 μA cm-2. Overall, this study demonstrates two simple, cost-effective and efficient strategies to manipulate the morphology of gold nanostructures, and thus their catalytic property, paving the way for the successful manufacturing of functional abiotic glucose fuel cells.
Collapse
Affiliation(s)
- Tushar Kanti Maiti
- Department of Chemical Engineering and Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Claverton Down, Bath BA2 7AY, UK; (T.K.M.); (A.N.)
- Department of Polymer and Process Engineering, IIT Roorkee, Saharanpur 47001, India;
| | - Wanli Liu
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; (W.L.); (A.M.S.)
| | - Asghar Niyazi
- Department of Chemical Engineering and Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Claverton Down, Bath BA2 7AY, UK; (T.K.M.); (A.N.)
| | - Adam M. Squires
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; (W.L.); (A.M.S.)
| | - Sujay Chattpoadhyay
- Department of Polymer and Process Engineering, IIT Roorkee, Saharanpur 47001, India;
| | - Mirella Di Lorenzo
- Department of Chemical Engineering and Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Claverton Down, Bath BA2 7AY, UK; (T.K.M.); (A.N.)
| |
Collapse
|
3
|
Zhou C, Shi S, Zhang X, Sun Y, Peng G, Yuan W. Mechanism insight into the N-C polar bond and Pd-Co heterojunction for improved hydrogen evolution activity. iScience 2024; 27:109620. [PMID: 38628965 PMCID: PMC11019276 DOI: 10.1016/j.isci.2024.109620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/04/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Constructing platinum-like materials with excellent catalytic activity and low cost has great significance for hydrogen evolution reaction (HER) during electrolysis of water. Herein, palladium nanoparticles (NPs) deposition on the surface of Co NPs using nitrogen-doped carbon (NC) as substrate, denoted as N-ZIFC/CoPd-30, are manufactured and served as HER electrocatalysts. Characterization results and density functional theory calculations validate that Pd-Co heterojunctions with NC acting as "electron donators" promote the Pd species transiting to the electron-rich state based on an efficient electron transfer mechanism, namely the N-C polar bonds induced strong metal-support interaction effect. The electron-rich Pd sites are beneficial to HER. Satisfactorily, N-ZIFC/CoPd-30 have only low overpotentials of 16, 162, and 13 mV@-10 mA cm-2 with the small Tafel slopes of 98 mV/decade, 126 mV/decade, and 72 mV/decade in pH of 13, 7, and 0, respectively. The success in fabricating N-ZIFC/CoPd opens a promising path to constructing other platinum-like electrocatalysts with high HER activity.
Collapse
Affiliation(s)
- Chenliang Zhou
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People’s Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Shaoyuan Shi
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People’s Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, People’s Republic of China
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Xingyu Zhang
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People’s Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Yuting Sun
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People’s Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Guan Peng
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People’s Republic of China
| | - Wenjing Yuan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People’s Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, People’s Republic of China
| |
Collapse
|
4
|
Xu B, Zhang Y, Li L, Shao Q, Huang X. Recent progress in low-dimensional palladium-based nanostructures for electrocatalysis and beyond. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214388] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
5
|
Wang H, Li GM, Li B, You JL. An Effective Strategy for Template-Free Electrodeposition of Aluminum Nanowires with Highly Controllable Irregular Morphologies. NANOMATERIALS 2022; 12:nano12091390. [PMID: 35564099 PMCID: PMC9105039 DOI: 10.3390/nano12091390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 02/01/2023]
Abstract
Aluminum nanowires with irregular morphologies were prepared by template-free electrodeposition from a room-temperature chloroaluminate ionic liquid. The effects of the diffusion condition and deposition potential on the morphologies of Al nanowires were investigated. The decrease of diffusion flux leads to the formation of particular segmented morphologies of Al nanowires. A dynamic equilibrium between the electrochemical reaction and the diffusion of Al2Cl7− results in the current fluctuation and the periodical variation of diameters in the Al nanowires growth period. Al nanowires with several kinds of morphologies can be controllably electrodeposited under a restricted diffusion condition, without using a template. Increasing the overpotential shows the similar influence on the morphology of Al nanowires as the decrease in diffusion flux under the restricted diffusion condition. Most of the segmented Al nanowires have a single crystalline structure and grow in the [100] orientation. This work also provides a new strategy for the fabrication of nanowires with highly controllable irregular morphologies.
Collapse
Affiliation(s)
- Heng Wang
- School of Mechanical and Power Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China; (H.W.); (G.-M.L.)
| | - Guo-Min Li
- School of Mechanical and Power Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China; (H.W.); (G.-M.L.)
| | - Bing Li
- School of Mechanical and Power Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China; (H.W.); (G.-M.L.)
- Correspondence: (B.L.); (J.-L.Y.)
| | - Jing-Lin You
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- Correspondence: (B.L.); (J.-L.Y.)
| |
Collapse
|
6
|
Chen Y, Zeng X, Liu Y, Ye R, Liang Q, Hu J. Controlling alloy to core-shell structure transformation of Au-Pd icosahedral nanoparticles. Chem Commun (Camb) 2021; 57:9410-9413. [PMID: 34528951 DOI: 10.1039/d1cc02957f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure transformation between Au-Pd alloy and core-shell icosahedral nanoparticles was achieved by a one-step aqueous-phase strategy. This strategy provided a way to tune the structure and atomic distribution of Au-Pd icosahedral nanoparticles. It could modulate the electronic structure of Pd, achieving promoted electrocatalytic ability toward the hydrogen evolution reaction.
Collapse
Affiliation(s)
- Yuyu Chen
- Key Lab of Fuel Cell Technology of Guangdong Province, Department of Chemistry, College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Xiaobing Zeng
- Key Lab of Fuel Cell Technology of Guangdong Province, Department of Chemistry, College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yawen Liu
- Key Lab of Fuel Cell Technology of Guangdong Province, Department of Chemistry, College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Rongkai Ye
- Key Lab of Fuel Cell Technology of Guangdong Province, Department of Chemistry, College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Qianwei Liang
- Key Lab of Fuel Cell Technology of Guangdong Province, Department of Chemistry, College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jianqiang Hu
- Key Lab of Fuel Cell Technology of Guangdong Province, Department of Chemistry, College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
7
|
Affiliation(s)
- Zhenni Ma
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| | - Ulrich Legrand
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| | - Ergys Pahija
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| | - Jason R. Tavares
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| | - Daria C. Boffito
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
- Canada Research Chair in Intensified Mechano-Chemical Processes for Sustainable Biomass Conversion, Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec, Canada
| |
Collapse
|
8
|
Das SK, Chandra Sahu S, Ghosh A, Kumar Jena B. The Hybrids of Core‐Shell Chain‐like Nanostructure of Au@Porous Pd with Graphene for Energy Conversion Application. ChemistrySelect 2020. [DOI: 10.1002/slct.201904968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sushanta K. Das
- Materials Chemistry Department CSIR-Institute of Minerals and Materials Technology Bhubaneswar 751013 India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Subash Chandra Sahu
- Department of Chemistry Govt. Women's College, Sambalpur Odisha 768001 India
| | - Arnab Ghosh
- Department of Physics Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Bikash Kumar Jena
- Materials Chemistry Department CSIR-Institute of Minerals and Materials Technology Bhubaneswar 751013 India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
9
|
Dong Y, Chen Q, Cheng X, Li H, Chen J, Zhang X, Kuang Q, Xie Z. Optimization of gold-palladium core-shell nanowires towards H 2O 2 reduction by adjusting shell thickness. NANOSCALE ADVANCES 2020; 2:785-791. [PMID: 36133255 PMCID: PMC9417247 DOI: 10.1039/c9na00726a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/30/2019] [Indexed: 05/12/2023]
Abstract
Designable bimetallic core-shell nanoparticles exhibit superb performance in many fields including industrial catalysis, energy conversion and chemical sensing, due to their outstanding properties associated with their tunable electronic structure. Herein, Au-Pd core-shell (AurichPd@AuPdrich) nanowires (NWs) were synthesized through a one-pot facile chemical reduction method in the presence of cetyltrimethyl ammonium bromide (CTAB) surfactant. The thickness of the Pd shell could be adjusted by directly controlling the Au/Pd feeding ratio while maintaining the nanowire morphology. The as-obtained Au75Pd25 core-shell NWs with a thin Pdrich shell showed significantly enhanced activities towards the reduction of hydrogen peroxide with the sensitivity reaching 338 μA cm-2 mM-1 and a linear range up to 10 mM. In sum, Pd shell thickness could be used to adjust the electronic structure, thereby optimizing the catalytic activity.
Collapse
Affiliation(s)
- Yongdi Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Qiaoli Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology Hangzhou 310014 China
| | - Xiqing Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Huiqi Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Jiayu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Xibo Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Qin Kuang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Zhaoxiong Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
10
|
Liu X, Bu Y, Cheng T, Gao W, Jiang Q. Flower-like carbon supported Pd–Ni bimetal nanoparticles catalyst for formic acid electrooxidation. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Kuang W, Jiang Z, Li H, Zhang J, Zhou L, Li Y. Self‐Supported Composition‐Tunable Au/PtPd Core/Shell Tri‐Metallic Nanowires for Boosting Alcohol Electrooxidation and Suzuki Coupling. ChemElectroChem 2018. [DOI: 10.1002/celc.201801255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wen‐Tao Kuang
- College of Chemistry and Chemical EngineeringHunan University Changsha 410082, Hunan Province China
| | - Ze‐Li Jiang
- College of Chemistry and Chemical EngineeringHunan University Changsha 410082, Hunan Province China
| | - Hui Li
- College of Chemistry and Chemical EngineeringHunan University Changsha 410082, Hunan Province China
| | - Jing‐Xuan Zhang
- College of Chemistry and Chemical EngineeringHunan University Changsha 410082, Hunan Province China
| | - Lin‐Nan Zhou
- College of Chemistry and Chemical EngineeringHunan University Changsha 410082, Hunan Province China
| | - Yong‐Jun Li
- College of Chemistry and Chemical EngineeringHunan University Changsha 410082, Hunan Province China
| |
Collapse
|
12
|
Zong Z, Xu K, Li D, Tang Z, He W, Liu Z, Wang X, Tian Y. Peptide templated Au@Pd core-shell structures as efficient bi-functional electrocatalysts for both oxygen reduction and hydrogen evolution reactions. J Catal 2018. [DOI: 10.1016/j.jcat.2018.02.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Ding Z, Tang Z, Li L, Wang K, Wu W, Chen X, Wu X, Chen S. Ternary PtVCo dendrites for the hydrogen evolution reaction, oxygen evolution reaction, overall water splitting and rechargeable Zn–air batteries. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00623g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Designing a highly active, robust and cost-effective electrocatalyst with multiple functionalities toward overall water splitting and rechargeable Zn–air battery applications is crucial and urgent for the development of sustainable energy sources.
Collapse
Affiliation(s)
- Zhaoqing Ding
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials
- New Energy Research Institute
- School of Environment and Energy
- South China University of Technology
- Guangzhou Higher Education Mega Centre
| | - Zhenghua Tang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials
- New Energy Research Institute
- School of Environment and Energy
- South China University of Technology
- Guangzhou Higher Education Mega Centre
| | - Ligui Li
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials
- New Energy Research Institute
- School of Environment and Energy
- South China University of Technology
- Guangzhou Higher Education Mega Centre
| | - Kai Wang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials
- New Energy Research Institute
- School of Environment and Energy
- South China University of Technology
- Guangzhou Higher Education Mega Centre
| | - Wen Wu
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials
- New Energy Research Institute
- School of Environment and Energy
- South China University of Technology
- Guangzhou Higher Education Mega Centre
| | - Xiaoning Chen
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials
- New Energy Research Institute
- School of Environment and Energy
- South China University of Technology
- Guangzhou Higher Education Mega Centre
| | - Xiao Wu
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials
- New Energy Research Institute
- School of Environment and Energy
- South China University of Technology
- Guangzhou Higher Education Mega Centre
| | - Shaowei Chen
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials
- New Energy Research Institute
- School of Environment and Energy
- South China University of Technology
- Guangzhou Higher Education Mega Centre
| |
Collapse
|