1
|
Pérez A, Orfila M, Linares M, Sanz R, Marugán J, Molina R, Botas JA. Hydrogen production by thermochemical water splitting with La0.8Al0.2MeO3-δ (Me= Fe, Co, Ni and Cu) perovskites prepared under controlled pH. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
2
|
Guo M, Xia T, Li Q, Sun L, Zhao H. Boosting the electrocatalytic performance of Fe-based perovskite cathode electrocatalyst for solid oxide fuel cells. Ann Ital Chir 2021. [DOI: 10.1016/j.jeurceramsoc.2021.06.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Muñoz Gil D, Boulahya K, Santamaria Santoyo M, Azcondo MT, Amador U. Superior Performance as Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cells of the Ruddlesden-Popper n = 2 Member Eu 2SrCo 0.50Fe 1.50O 7-δ with Low Cobalt Content. Inorg Chem 2021; 60:3094-3105. [PMID: 33586955 DOI: 10.1021/acs.inorgchem.0c03391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of the contents of iron and cobalt on the crystal structure, oxygen content, thermal expansion coefficient, and electrical-electrochemical properties of materials Eu2SrCoxFe2-xO7-δ (x = 0.50 and 1.00) are reported. These oxides are well-ordered new members of the Ruddlesden-Popper series (Eu,Sr)n+1(Co,Fe)nO3n+1 system with n = 2 as determined by selected area electron diffraction and high-resolution transmission electron microscopy and X-ray diffraction studies. The two materials are semiconductors of p-type, with much higher total conductivity under working conditions for the low cobalt compound, Eu2SrCo0.50Fe1.50O7-δ. Composite cathodes prepared with this oxide present much lower area-specific resistance values (0.08 Ω·cm2 at 973 K in air) than composites containing Eu2SrCo1.00Fe1.00O7-δ (1.15 Ω·cm2). This significant difference is related to the much higher total conductivity and a sufficiently high content of oxygen vacancies in the Fe-rich phase. The excellent electrochemical performance of Eu2SrCo0.50Fe1.50O7-δ with low cobalt content, which shows one of the lowest area-specific resistance reported so far for a Ruddlesden-Popper oxide, makes it a good candidate for application as a cathode material for solid oxide fuel cells at intermediate temperatures in real devices.
Collapse
Affiliation(s)
- Daniel Muñoz Gil
- Instituto de Cerámica y Vidrio, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Khalid Boulahya
- Departamento de Química Inorgánica, Facultad Ciencias Químicas, Universidad Complutense, E-28040 Madrid, Spain
| | - María Santamaria Santoyo
- Departamento de Química Inorgánica, Facultad Ciencias Químicas, Universidad Complutense, E-28040 Madrid, Spain
| | - M Teresa Azcondo
- Facultad de Farmacia, Departamento de Química y Bioquímica, Urbanización Montepríncipe, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, E-28668 Madrid, Spain
| | - Ulises Amador
- Facultad de Farmacia, Departamento de Química y Bioquímica, Urbanización Montepríncipe, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, E-28668 Madrid, Spain
| |
Collapse
|
4
|
Muñoz-Gil D, Azcondo MT, Ritter C, Fabelo O, Pérez-Coll D, Mather GC, Amador U, Boulahya K. The Effects of Sr Content on the Performance of Nd 1-xSr xCoO 3-δ Air-Electrode Materials for Intermediate Temperature Solid Oxide Fuel Cells under Operational Conditions. Inorg Chem 2020; 59:12111-12121. [PMID: 32806009 DOI: 10.1021/acs.inorgchem.0c01049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potential of the perovskite system Nd1-xSrxCoO3-δ (x = 1/3 and 2/3) as cathode material for solid oxide fuel cells (SOFCs) has been investigated via detailed structural, electrical, and electrochemical characterization. The average structure of x = 1/3 is orthorhombic with a complex microstructure consisting of intergrown, adjacent, perpendicularly oriented domains. This orthorhombic symmetry remains throughout the temperature range 373-1073 K, as observed by neutron powder diffraction. A higher Sr content of x = 2/3 leads to stabilization of the cubic perovskite with a homogeneous microstructure and with a higher oxygen vacancy content and cobalt oxidation state than the orthorhombic phase at SOFC operation temperature. Both materials are p-type electronic conductors with high total conductivities of 690 and 1675 S·cm-1 at 473 K in air for x = 1/3 and 2/3, respectively. Under working conditions, both compounds exhibit similar electronic conductivities, since x = 2/3 loses more oxygen on heating than x = 1/3, associated with a greater loss of p-type charger carriers. However, composite cathodes prepared with Nd1/3Sr2/3CoO3-δ and Ce0.8Gd0.2O2-δ present lower ASR values (0.10 Ω·cm2 at 973 K in air) than composites prepared with Nd2/3Sr1/3CoO3-δ and Ce0.8Gd0.2O2-δ (0.34 Ω·cm2). The high activity for the oxygen electrochemical reaction at intermediate temperatures is likely attributable to a large disordered oxygen-vacancy concentration, resulting in a very promising SOFC cathode for real devices.
Collapse
Affiliation(s)
- Daniel Muñoz-Gil
- Instituto de Cerámica y Vidrio, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - M Teresa Azcondo
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU San Pablo, E-28668, Boadilla del Monte, Madrid, Spain
| | - Clemens Ritter
- Institut Laue-Langevin, BP 156-38042 Grenoble, Cedex 9, France
| | - Oscar Fabelo
- Institut Laue-Langevin, BP 156-38042 Grenoble, Cedex 9, France
| | | | - Glenn C Mather
- Instituto de Cerámica y Vidrio, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Ulises Amador
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU San Pablo, E-28668, Boadilla del Monte, Madrid, Spain
| | - Khalid Boulahya
- Departamento de Química Inorgánica, Facultad Ciencias Químicas, Universidad Complutense, E-28040 Madrid, Spain
| |
Collapse
|
5
|
Azcondo MT, Orfila M, Marugán J, Sanz R, Muñoz-Noval A, Salas-Colera E, Ritter C, García-Alvarado F, Amador U. Novel Perovskite Materials for Thermal Water Splitting at Moderate Temperature. CHEMSUSCHEM 2019; 12:4029-4037. [PMID: 31282611 DOI: 10.1002/cssc.201901484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/07/2019] [Indexed: 06/09/2023]
Abstract
Materials with the formula Sr2 CoNb1-x Tix O6-δ (x=1.00, 0.70; δ=number of oxygen vacancies) present a cubic perovskite-like structure. They are easily and reversibly reduced in N2 or Ar and re-oxidized in air upon heating. Oxidation by water (wet N2 ), involving splitting of water at a temperature as low as 700 °C, produces hydrogen. Both compounds displayed outstanding H2 production in the first thermochemical cycle, the Sr2 CoNb0.30 Ti0.70 O6-δ material retaining its outstanding performance upon cycling, whereas the hydrogen yield of the x=1 oxide showed a continuous decay. The retention of the materials' ability to promote water splitting correlated with their structural, chemical, and redox reversibility upon cycling. On reduction/oxidation, Co ions reversibly changed their oxidation state to compensate the release/recovery of oxygen in both compounds. However, in Sr2 CoTiO6-δ , two phases with different oxygen contents segregated, whereas in Sr2 CoNb0.30 Ti0.70 O6-δ this effect was not evident. Therefore, this latter material displayed a hydrogen production as high as 410 μmol H 2 g-1 perovskite after eight thermochemical cycles at 700 °C, which is among the highest ever reported, making this perovskite a promising candidate for thermosolar water splitting in real devices.
Collapse
Affiliation(s)
- M Teresa Azcondo
- Universidad San Pablo-CEU, CEU Universities, Facultad de Farmacia, Departamento de Química y Bioquímica, Urbanización Montepríncipe, Boadilla del Monte, 28668, Madrid, Spain
| | - María Orfila
- Departamento de Tecnología Química y Ambiental, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, 28933, Madrid, Spain
| | - Javier Marugán
- Departamento de Tecnología Química y Ambiental, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, 28933, Madrid, Spain
| | - Raúl Sanz
- Departamento de Tecnología Química y Ambiental, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, 28933, Madrid, Spain
| | - Alvaro Muñoz-Noval
- Departamento de Física de Materiales, Facultad de Físicas, Universidad Complutense, E-28040, Madrid, Spain
| | - Eduardo Salas-Colera
- SpLine Spanish CRG Beamline, ESRF, 6 Rue J. Horowitz, Grenoble, Isere/Rhone-Alpes, 38042, France
| | - Clemens Ritter
- Institut Laue-Langevin, BP 156-38042, Grenoble Cedex 9, France
| | - Flaviano García-Alvarado
- Universidad San Pablo-CEU, CEU Universities, Facultad de Farmacia, Departamento de Química y Bioquímica, Urbanización Montepríncipe, Boadilla del Monte, 28668, Madrid, Spain
| | - Ulises Amador
- Universidad San Pablo-CEU, CEU Universities, Facultad de Farmacia, Departamento de Química y Bioquímica, Urbanización Montepríncipe, Boadilla del Monte, 28668, Madrid, Spain
| |
Collapse
|