1
|
El-Fawal EM, El Naggar AMA, El-Zahhar AA, Alghandi MM, Morshedy AS, El Sayed HA, Mohammed AEME. Biofuel production from waste residuals: comprehensive insights into biomass conversion technologies and engineered biochar applications. RSC Adv 2025; 15:11942-11974. [PMID: 40264955 PMCID: PMC12013611 DOI: 10.1039/d5ra00857c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/09/2025] [Indexed: 04/24/2025] Open
Abstract
Biomass-derived residuals represent a vital renewable energy source, offering sustainable alternatives to mitigate fossil fuel dependency, address climate change, and manage waste. Although biomass generally has a lower calorific value (10-20 MJ kg-1) compared to fossil fuels (40-50 MJ kg-1), its energy recovery potential can be enhanced through advanced conversion technologies such as torrefaction, pyrolysis, and gasification. Additionally, biomass is considered carbon neutral when sourced sustainably, as the CO2 released during combustion is reabsorbed by plants during their regrowth cycle, maintaining a balanced carbon flux in the atmosphere. This review explores the diverse sources of biomass and examines their chemical compositions and inherent properties, emphasizing their transformation into valuable energy carriers and bio-products. It provides a comprehensive analysis of thermochemical, biochemical, and physicochemical conversion technologies, detailing their mechanisms, efficiencies and applications. Special attention is given to biochar, a product of biomass pyrolysis, highlighting its potential in pollution mitigation, carbon sequestration, and as a catalyst in industrial applications. The review delves into synthesis processes of biochar and performance-enhancing modifications, illustrating its significant role in sustainable environmental management. Additionally, the economic and ecological advantages of biomass-derived energy, including reduced greenhouse gas emissions and waste reutilization, are critically evaluated, underscoring its superiority over conventional fossil fuels. Challenges limiting the scalability of biomass energy, such as technology costs, process efficiency, and market dynamics, are addressed, alongside prospective solutions. By consolidating extensive research on biomass conversion technologies and engineered biochar applications, this review serves as a valuable resource for researchers and policymakers. It aims to guide advancements in biomass utilization, fostering a transition toward sustainable energy systems and addressing global energy and environmental challenges.
Collapse
Affiliation(s)
- Esraa M El-Fawal
- Egyptian Petroleum Research Institute (EPRI) 1 Ahmed El-Zomor st. Nasr City Cairo Egypt
| | - Ahmed M A El Naggar
- Egyptian Petroleum Research Institute (EPRI) 1 Ahmed El-Zomor st. Nasr City Cairo Egypt
| | - Adel A El-Zahhar
- Department of Chemistry, Faculty of Science, King Khalid University Abha 9004 Saudi Arabia
| | - Majed M Alghandi
- Department of Chemistry, Faculty of Science, King Khalid University Abha 9004 Saudi Arabia
| | - Asmaa S Morshedy
- Egyptian Petroleum Research Institute (EPRI) 1 Ahmed El-Zomor st. Nasr City Cairo Egypt
| | - Hussien A El Sayed
- Egyptian Petroleum Research Institute (EPRI) 1 Ahmed El-Zomor st. Nasr City Cairo Egypt
| | | |
Collapse
|
2
|
Mandalika AS, Runge TM, Ragauskas AJ. Membrane Separations in Biomass Processing. Chempluschem 2025; 90:e202400497. [PMID: 39466007 PMCID: PMC11826140 DOI: 10.1002/cplu.202400497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 10/29/2024]
Abstract
The development of integrated biorefineries and the greater utilization of biomass resources to reduce dependence on fossil fuel-derived products require research emphasis not just on conversion strategies but also on improving separations associated with biorefining. A significant roadblock towards developing biorefineries is the lack of effective separation techniques evidenced by the relative deficiency of literature in this area. Additionally, high conversion yields may only be realized if effective separations generate feedstock of sufficient purity - this makes research into biomass conversion strategies all the more critical. In this review, the challenges associated with biomass separations are discussed, followed by an overview of the most appropriate separation strategies for processing biomass. One of the unit operations most appealing for biorefining, membrane separations (MS), is then considered along with a review of the recent literature utilizing this technique in biomass processing.
Collapse
Affiliation(s)
- Anurag S. Mandalika
- Assistant Research Professor, Center for Energy StudiesLouisiana State University93 S Quad Dr, 1115Baton RougeLA 70803
| | - Troy M. Runge
- Professor of Biological Systems Engineering and CALS Associate Dean for Research, 2121 Wisconsin Energy Institute BuildingUniversity of Wisconsin-Madison1552 University AveMadisonWI 53726
| | - Arthur J. Ragauskas
- Governor's Chair for Biorefining, Joint Institute for Biological Sciences, Biosciences DivisionOak Ridge National Laboratory1 Bethel Valley RoadOak RidgeTN 37831
| |
Collapse
|
3
|
Shen K, Xia L, Gao X, Li C, Sun P, Liu Y, Fan H, Li X, Han L, Lu C, Jiao K, Xia C, Wang Z, Deng B, Pan F, Sun T. Tobacco as bioenergy and medical plant for biofuels and bioproduction. Heliyon 2024; 10:e33920. [PMID: 39055830 PMCID: PMC11269859 DOI: 10.1016/j.heliyon.2024.e33920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/05/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Tobacco, a widely cultivated crop, has been extensively utilized by humans for an extended period. However, the tobacco industry generates a significant amount of organic waste, and the effective utilization of this tobacco waste has been limited. Currently, most tobacco waste is either recycled as reconstituted tobacco sheets or disposed of in landfills. However, tobacco possesses far more potential value than just these applications. This article provides an overview of the diverse uses of tobacco waste in agriculture, medicine, chemical engineering, and energy sectors. In the realm of agriculture, tobacco waste finds primary application as fertilizers and pesticides. In medical applications, the bioactive compounds present in tobacco are fully harnessed, resulting in the production of phenols, solanesol, polysaccharides, proteins, and even alkaloids. These bioactive compounds exhibit beneficial effects on human health. Additionally, the applications of tobacco waste in chemical engineering and energy sectors are centered around the utilization of lignocellulosic compounds and certain fuels. Chemical platform compounds derived from tobacco waste, as well as selected fuel sources, play a significant role in these areas. The rational utilization of tobacco waste represents a promising prospect, particularly in the present era when sustainable development is widely advocated. Moreover, this approach holds significant importance for enhancing energy utilization.
Collapse
Affiliation(s)
- Kai Shen
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Liwei Xia
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xiaoyuan Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Cuiyu Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Ping Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yikuan Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Hu Fan
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Xu Li
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Leyuan Han
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Chengfei Lu
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Kaixuan Jiao
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Chen Xia
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Zhi Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Bin Deng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Fanda Pan
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Tulai Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| |
Collapse
|
4
|
John AJ, Selvarajan E. Ionic liquid-assisted pretreatment of lignocellulosic biomass using purified Streptomyces MS2A cellulase for bioethanol production. Int J Biol Macromol 2024; 270:132149. [PMID: 38740158 DOI: 10.1016/j.ijbiomac.2024.132149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/08/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
In recent years, the process of producing bioethanol from lignocellulosic biomass through biorefining has become increasingly important. However, to obtain a high yield of ethanol, the complex structures in the feedstock must be broken down into simple sugars. A cost-effective and innovative method for achieving this is ionic liquid pre-treatment, which is widely used to efficiently hydrolyze the lignocellulosic material. The study aims to produce a significant profusion of bioethanol via catalytic hydrolysis of ionic liquid-treated lignocellulose biomass. The current study reports the purification of Streptomyces sp. MS2A cellulase via ultrafiltration and gel permeation chromatography. The kinetic parameters and the biochemical nature of the purified cellulase were analyzed for the effective breakdown of the EMIM[OAC] treated lignocellulose chain. The two-step cellulase purification resulted in 6.28 and 12.44 purification folds. The purified cellulase shows a Km value of 0.82 ± 0.21 mM, and a Vmax value of 85.59 ± 8.87 μmol min-1 mg-1 with the catalytic efficiency of 1.027 S-1. The thermodynamic parameters like ΔH, ΔS, and ΔG of the system were studied along with the thermal deactivation kinetics of cellulase. The optimal temperature and pH of the purified cellulase enzyme for hydrolysis was found to be 40 °C and 7. The rice husk and wheat husk used in this study were pretreated with the EMIM [OAC] ionic liquid and the change in the structure of lignocellulosic biomass was observed via HRSEM. The ionic liquid treated biomass showed the highest catalytic hydrolysis yield of 106.66 ± 0.19 mol/ml on the third day. The obtained glucose was fermented with Saccharomyces cerevisiae to yield 23.43 g of ethanol/l of glucose from the rice husk (RH) and 24.28 g of ethanol/l of glucose from the wheat husk (WH).
Collapse
Affiliation(s)
- Ashwini J John
- Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ethiraj Selvarajan
- Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
5
|
Chemical hydrolysis of hemicellulose from sugarcane bagasse. A comparison between the classical sulfuric acid method with the acidic ionic liquid 1-ethyl-3-methylimidazolium hydrogen sulfate. ACTA INNOVATIONS 2022. [DOI: 10.32933/actainnovations.46.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Dilute sulfuric acid and acidic ionic liquids are pretreatment methods used to selectively hydrolyze hemicellulose from lignocellulosic biomasses. In this work, a comparison between these techniques is carried out by treating sugarcane bagasse both with 1-ethyl-3-methylimidazolium hydrogen sulfate at different ionic-liquid and water contents and with H 2 SO 4 at the same conditions and equivalent ionic liquid molar contents. Results from the use of ionic liquid showed that it was possible to tune the biomass treatment either to achieve high hemicellulose hydrolysis yields of 72.5 mol% to very low furan and glucose co-production, or to obtain furfural at moderate yields of 18.7 mol% under conditions of low water concentration. In comparison to the use of ionic liquid, sulfuric acid pretreatment increased hemicellulose hydrolysis yields by 17%, but the 8.6 mol% furfural yield was also higher, and these yields were obtained at high water concentration conditions. Besides, no such tuning ability of the biomass treatment conditions can be made.
Collapse
|
6
|
Łukomska A, Wiśniewska A, Dąbrowski Z, Kolasa D, Luchcińska S, Domańska U. Separation of cobalt, lithium and nickel from the “black mass” of waste Li-ion batteries by ionic liquids, DESs and organophosphorous-based acids extraction. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Portela-Grandío A, Peleteiro S, Yáñez R, Romaní A. Integral valorization of Acacia dealbata wood in organic medium catalyzed by an acidic ionic liquid. BIORESOURCE TECHNOLOGY 2021; 342:126013. [PMID: 34587581 DOI: 10.1016/j.biortech.2021.126013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
In this work, a novel delignification process was proposed for the fractionation of invasive species such as Acacia dealbata wood. Organosolv process catalyzed with an acidic ionic liquid, 1-butyl-3-methylimidazolium hydrosulfate was evaluated to obtain cellulose-enriched solids and liquid fractions rich in hemicelluloses derived compounds and lignin. Under selected operating conditions (190 °C, 60% ethanol, 60 min of reaction time and 0.6 g 1-butyl-3-methylimidazolium hydrosulfate/g wood), high solubilization of lignin and hemicelluloses and cellulose recovery (87.5%, 88.7% and 88.3%, respectively), with a pulp yield of 43.1% were achieved. Moreover, 62.6 % of lignin was recovered by precipitation from the black liquor (composed mainly by 4.43 g xylose/L, 7.66 g furfural/L and 3.59 g acetic acid/L). In addition, enzymatic digestibility of delignified wood was also assayed. Overall, this work presents an alternative biorefinery scheme based in the use of environmentally friendly solvent and catalyst for selective fractionation of A. dealbata wood.
Collapse
Affiliation(s)
- A Portela-Grandío
- Department of Chemical Engineering, Faculty of Science, Universidade de Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain
| | - S Peleteiro
- Department of Chemical Engineering, Faculty of Science, Universidade de Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain
| | - R Yáñez
- Department of Chemical Engineering, Faculty of Science, Universidade de Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain; CINBIO, Universidade de Vigo, 36310 Vigo, Spain.
| | - A Romaní
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Yuan Q, Liu S, Ma MG, Ji XX, Choi SE, Si C. The Kinetics Studies on Hydrolysis of Hemicellulose. Front Chem 2021; 9:781291. [PMID: 34869229 PMCID: PMC8637159 DOI: 10.3389/fchem.2021.781291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The kinetics studies is of great importance for the understanding of the mechanism of hemicellulose pyrolysis and expanding the applications of hemicellulose. In the past years, rapid progress has been paid on the kinetics studies of hemicellulose hydrolysis. In this article, we first introduced the hydrolysis of hemicelluloses via various strategies such as autohydrolysis, dilute acid hydrolysis, catalytic hydrolysis, and enzymatic hydrolysis. Then, the history of kinetic models during hemicellulose hydrolysis was summarized. Special attention was paid to the oligosaccharides as intermediates or substrates, acid as catalyst, and thermogravimetric as analyzer method during the hemicellulose hydrolysis. Furthermore, the problems and suggestions of kinetic models during hemicellulose hydrolysis was provided. It expected that this article will favor the understanding of the mechanism of hemicellulose pyrolysis.
Collapse
Affiliation(s)
- Qi Yuan
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, China
| | - Shan Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ming-Guo Ma
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, China
| | - Xing-Xiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Sun-Eun Choi
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Gangwon National University, Chuncheon, South Korea
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
9
|
Qaseem MF, Shaheen H, Wu AM. Cell wall hemicellulose for sustainable industrial utilization. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2021; 144:110996. [DOI: 10.1016/j.rser.2021.110996] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Zhang L, Wei L, Zhai S, Zhao D, Sun J, An Q. Hydrogen bond promoted thermal stability enhancement of acetate based ionic liquid. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Bukowski A, Esau D, Rafat Said AA, Brandt-Talbot A, Albert J. Combining Cost-Efficient Cellulose and Short-Chain Carboxylic Acid Production: The Polyoxometalate (POM)-Ionosolv Concept. Chempluschem 2020; 85:373-386. [PMID: 32101386 DOI: 10.1002/cplu.202000025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/06/2020] [Indexed: 11/06/2022]
Abstract
Full cost-effective exploitation of all wood components is key to growing a commercially successful biorefining industry. An innovative process is reported that combines fractionation of lignocellulosic biomass using a low-cost ionic liquid (Ionosolv) and production of bio-derived formic acid using polyoxometalates and molecular oxygen (OxFA process). We show that the hemicellulose and part of the lignin were selectively dissolved into the ionic liquid triethylammonium hydrogen sulfate and oxidised in situ to short-chain, distillable carboxylic acids by a Keggin-type polyoxometalate with high yields and selectivities. Characterization by several techniques, including ICP-OES, FTIR, GC, HPLC and NMR spectroscopy confirmed stability of the catalyst over three consecutive POM-Ionosolv recycles and stable formic acid yields.High formic acid yields of 26 % (pine chips), 23 % (beech chips), and 18 % (Miscanthus) were obtained with respect to the initial carbon content of the biomass, with unprecedented oxidation selectivities for formic acid of 54-62 % depending on vanadium substitution in the polyoxometalate, the processing temperature and the water content in the reaction mixture.. We also demonstrate that the cellulose rich pulp is a suitable source of glucose via enzymatic saccharification. We report cellulose yields of 37% for Miscanthus (from originally 48% glucan content), 33% for pine (from originally 49%) and 31% for beech (from originally 41%) were achieved, and a saccharification yield of up to 25% without optimisation. With further optimisation, this concept has the potential to generate two chemical products directly from lignocellulose in high yields and selectivities and hence a novel avenue for full utilisation of cellulose, hemicellulose and lignin.
Collapse
Affiliation(s)
- Anna Bukowski
- Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Daniel Esau
- Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Aida Abouelela Rafat Said
- Imperial College London, Department of Chemical Engineering, Exhibition Road, SW7 2AZ, London, United Kingdom
| | - Agnieszka Brandt-Talbot
- Imperial College London, Department of Chemistry, Exhibition Road, SW7 2AZ, London, United Kingdom
| | - Jakob Albert
- Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| |
Collapse
|
12
|
Asim AM, Uroos M, Naz S, Sultan M, Griffin G, Muhammad N, Khan AS. Acidic ionic liquids: Promising and cost-effective solvents for processing of lignocellulosic biomass. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110943] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
|