1
|
Wang X, Xu W, Zhang D, Li X, Shi J. Structural Characteristics-Reactivity Relationships for Catalytic Depolymerization of Lignin into Aromatic Compounds: A Review. Int J Mol Sci 2023; 24:ijms24098330. [PMID: 37176036 PMCID: PMC10179062 DOI: 10.3390/ijms24098330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Developing renewable biomass resources is an urgent task to reduce climate change. Lignin, the only renewable aromatic feedstock present in nature, has attracted considerable global interest in its transformation and utilization. However, the complexity of lignin's structure, uncertain linkages, stability of side chain connection, and inevitable recondensation of reaction fragments make lignin depolymerization into biofuels or platform chemicals a daunting challenge. Therefore, understanding the structural characteristics and reactivity relationships is crucial for achieving high-value utilization of lignin. In this review, we summarize the key achievements in the field of lignin conversion with a focus on the effects of the β-O-4 content, S/G ratio, lignin sources, and an "ideal" lignin-catechyl lignin. We discuss how these characteristics influence the formation of lignin monomer products and provide an outlook on the future direction of lignin depolymerization.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| | - Wenbiao Xu
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| | - Dan Zhang
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| | - Xiangyu Li
- Collaborative Innovation Center of Forest Biomass Green Manufacturing of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| | - Junyou Shi
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
- Collaborative Innovation Center of Forest Biomass Green Manufacturing of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| |
Collapse
|
2
|
Eswaran SCD, Subramaniam S, Sanyal U, Rallo R, Zhang X. Molecular structural dataset of lignin macromolecule elucidating experimental structural compositions. Sci Data 2022; 9:647. [PMID: 36273011 PMCID: PMC9588021 DOI: 10.1038/s41597-022-01709-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Lignin is one of the most abundant biopolymers in nature and has great potential to be transformed into high-value chemicals. However, the limited availability of molecular structure data hinders its potential industrial applications. Herein, we present the Lignin Structural (LGS) Dataset that includes the molecular structure of milled wood lignin focusing on two major monomeric units (coniferyl and syringyl), and the six most common interunit linkages (phenylpropane β-aryl ether, resinol, phenylcoumaran, biphenyl, dibenzodioxocin, and diaryl ether). The dataset constitutes a unique resource that covers a part of lignin’s chemical space characterized by polymer chains with lengths in the range of 3 to 25 monomer units. Structural data were generated using a sequence-controlled polymer generation approach that was calibrated to match experimental lignin properties. The LGS dataset includes 60 K newly generated lignin structures that match with high accuracy (~90%) the experimentally determined structural compositions available in the literature. The LGS dataset is a valuable resource to advance lignin chemistry research, including computational simulation approaches and predictive modelling. Measurement(s) | molecular structure | Technology Type(s) | Computer Modeling | Factor Type(s) | monomer ratio • bond frequency • degree of polymerization | Sample Characteristic - Organism | coniferous (softwood) • deciduous (hardwood) |
Collapse
Affiliation(s)
- Sudha Cheranma Devi Eswaran
- Bioproducts Sciences and Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA.,Voiland School of Chemical Engineering and Bioengineering, Washington State University, Richland, WA, 99354, USA
| | - Senthil Subramaniam
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA
| | - Udishnu Sanyal
- Bioproducts Sciences and Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA.,Voiland School of Chemical Engineering and Bioengineering, Washington State University, Richland, WA, 99354, USA
| | - Robert Rallo
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA.
| | - Xiao Zhang
- Bioproducts Sciences and Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA. .,Voiland School of Chemical Engineering and Bioengineering, Washington State University, Richland, WA, 99354, USA. .,Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA.
| |
Collapse
|
3
|
Jian T, Zhou Y, Wang P, Yang W, Mu P, Zhang X, Zhang X, Chen CL. Highly stable and tunable peptoid/hemin enzymatic mimetics with natural peroxidase-like activities. Nat Commun 2022; 13:3025. [PMID: 35641490 PMCID: PMC9156750 DOI: 10.1038/s41467-022-30285-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
Developing tunable and stable peroxidase mimetics with high catalytic efficiency provides a promising opportunity to improve and expand enzymatic catalysis in lignin depolymerization. A class of peptoid-based peroxidase mimetics with tunable catalytic activity and high stability is developed by constructing peptoids and hemins into self-assembled crystalline nanomaterials. By varying peptoid side chain chemistry to tailor the microenvironment of active sites, these self-assembled peptoid/hemin nanomaterials (Pep/hemin) exhibit highly modulable catalytic activities toward two lignin model substrates 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and 3,3’,5,5’-tetramethylbenzidine. Among them, a Pep/hemin complex containing the pyridyl side chain showed the best catalytic efficiency (Vmax/Km = 5.81 × 10−3 s−1). These Pep/hemin catalysts are highly stable; kinetics studies suggest that they follow a peroxidase-like mechanism. Moreover, they exhibit a high efficacy on depolymerization of a biorefinery lignin. Because Pep/hemin catalysts are highly robust and tunable, we expect that they offer tremendous opportunities for lignin valorization to high value products. Peroxidase mimics are currently being investigated as catalysts for lignin depolymerisation. In this article, the authors investigate a class of self-assembled and highly stable peptoid/hemin nanomaterials as peroxidase mimics that are highly stable and tuneable for the depolymerisation of a biorefinery lignin.
Collapse
Affiliation(s)
- Tengyue Jian
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yicheng Zhou
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.,The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Richland, WA, 99354, USA
| | - Peipei Wang
- The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Richland, WA, 99354, USA
| | - Wenchao Yang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.,School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Peng Mu
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.,Department of Mechanical Engineering and Materials Science and Engineering Program, State University of New York, Binghamton, NY, 13902, USA
| | - Xin Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Xiao Zhang
- The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Richland, WA, 99354, USA.
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA. .,Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
4
|
Vega-Aguilar CA, Barreiro MF, Rodrigues AE. Effect of Methoxy Substituents on Wet Peroxide Oxidation of Lignin and Lignin Model Compounds: Understanding the Pathway to C 4 Dicarboxylic Acids. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05085] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Carlos A. Vega-Aguilar
- Laboratory of Separation and Reaction Engineering−Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Centro de Investigação de Montanha−CIMO, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - M. Filomena Barreiro
- Centro de Investigação de Montanha−CIMO, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Alírio E. Rodrigues
- Laboratory of Separation and Reaction Engineering−Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|
5
|
Wang S, Li WX, Yang YQ, Chen X, Ma J, Chen C, Xiao LP, Sun RC. Unlocking Structure-Reactivity Relationships for Catalytic Hydrogenolysis of Lignin into Phenolic Monomers. CHEMSUSCHEM 2020; 13:4548-4556. [PMID: 32419330 DOI: 10.1002/cssc.202000785] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Lignin depolymerization into aromatic monomers with high yields and selectivity is essential for the economic feasibility of biorefinery. However, the relationship between lignin structure and its reactivity for upgradeability is still poorly understood, in large part owing to the difficulty in quantitative characterization of lignin structural properties. To overcome these shortcomings, advanced NMR technologies [2D HSQC (heteronuclear single quantum coherence) and 31 P] were used to accurately quantify lignin functionalities. Diverse lignin samples prepared from Eucalyptus grandis with varying β-O-4 linkages were subjected to Pd/C-catalyzed hydrogenolysis for efficient C-O bond cleavage to achieve theoretical monomer yields. Strong correlations were observed between the yield of monomeric aromatic compounds and the structural features of lignin, including the contents of β-O-4 linkages and phenolic hydroxyl groups. Notably, a combined yield of up to 44.1 wt % was obtained from β-aryl ether rich in native lignin, whereas much lower yields were obtained from technical lignins low in β-aryl ether content. This work quantitatively demonstrates that the lignin reactivity for acquiring aromatic monomer yields varies depending on the lignin fractionation processes.
Collapse
Affiliation(s)
- Shuizhong Wang
- Center for Lignocellulose Chemistry and Biomaterials, Liaoning Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Wen-Xin Li
- Center for Lignocellulose Chemistry and Biomaterials, Liaoning Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Yue-Qin Yang
- Center for Lignocellulose Chemistry and Biomaterials, Liaoning Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Xiaohong Chen
- Center for Lignocellulose Chemistry and Biomaterials, Liaoning Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Jiliang Ma
- Center for Lignocellulose Chemistry and Biomaterials, Liaoning Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Changzhou Chen
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Ling-Ping Xiao
- Center for Lignocellulose Chemistry and Biomaterials, Liaoning Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Run-Cang Sun
- Center for Lignocellulose Chemistry and Biomaterials, Liaoning Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| |
Collapse
|
6
|
Dong L, Lin L, Han X, Si X, Liu X, Guo Y, Lu F, Rudić S, Parker SF, Yang S, Wang Y. Breaking the Limit of Lignin Monomer Production via Cleavage of Interunit Carbon–Carbon Linkages. Chem 2019. [DOI: 10.1016/j.chempr.2019.03.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Bao H, Zhou Z, Kotsalis G, Lan G, Tong Z. Lignin valorization process control under feedstock uncertainty through a dynamic stochastic programming approach. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00176j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we address the feedstock uncertainty for a robust lignin valorization process through a dynamic stochastic programming approach.
Collapse
Affiliation(s)
- Hanxi Bao
- Agricultural and Biological Engineering University of Florida
- USA
| | - Zhiqiang Zhou
- Industrial and Systems Engineering Georgia Institute of Technology
- USA
| | - Georgios Kotsalis
- Industrial and Systems Engineering Georgia Institute of Technology
- USA
| | - Guanghui Lan
- Industrial and Systems Engineering Georgia Institute of Technology
- USA
| | - Zhaohui Tong
- Agricultural and Biological Engineering University of Florida
- USA
| |
Collapse
|
8
|
Lin KT, Ma R, Wang P, Xin J, Zhang J, Wolcott MP, Zhang X. Deep Eutectic Solvent Assisted Facile Synthesis of Lignin-Based Cryogel. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kuan-Ting Lin
- Voiland School of Chemical Engineering & Bioengineering Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, Washington 99354, United States
| | - Ruoshui Ma
- Voiland School of Chemical Engineering & Bioengineering Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, Washington 99354, United States
- Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Peipei Wang
- Voiland School of Chemical Engineering & Bioengineering Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, Washington 99354, United States
| | - Junna Xin
- Composite Materials & Engineering Center, Washington State University, Pullman, Washington 99164, United States
| | - Jinwen Zhang
- Composite Materials & Engineering Center, Washington State University, Pullman, Washington 99164, United States
| | - Michael P. Wolcott
- Composite Materials & Engineering Center, Washington State University, Pullman, Washington 99164, United States
| | - Xiao Zhang
- Voiland School of Chemical Engineering & Bioengineering Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, Washington 99354, United States
- Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
9
|
Li W, Dou X, Zhu C, Wang J, Chang HM, Jameel H, Li X. Production of liquefied fuel from depolymerization of kraft lignin over a novel modified nickel/H-beta catalyst. BIORESOURCE TECHNOLOGY 2018; 269:346-354. [PMID: 30195227 DOI: 10.1016/j.biortech.2018.08.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
In this study, a novel modified nickel/H-beta (Ni/DeAl-beta) catalyst, which has active acidic sites and hydrogen binding sites, was prepared and used to produce liquefied fuel from lignin. The bifunctional Ni/DeAl-beta catalyst efficiently converted kraft lignin into liquefied fuel due to the synergistic effect of aluminum Lewis acid sites and nickel hydrogen binding sites. At a nickel content of 0.6 mmol/gzeolite, the Ni/DeAl-beta catalyst gave a high liquid product yield of 88.6% at 300 °C for 36 h. Most of the liquid product was dissolved in petroleum ether (73% of 88.6%), which was mainly composed of monomeric and dimeric degradation products. Under these conditions, the higher heating values (HHV) increased from 24.9 MJ/kg for kraft lignin to 32.0 MJ/kg for the liquid product. These results demonstrated the bifunctional Ni/DeAl-beta catalyst could be an efficient catalyst for lignin to liquefied fuel conversion.
Collapse
Affiliation(s)
- Wenzhi Li
- Laboratory of Basic Research in Biomass Conversion and Utilization, University of Science and Technology of China, Hefei 230026, PR China
| | - Xiaomeng Dou
- Laboratory of Basic Research in Biomass Conversion and Utilization, University of Science and Technology of China, Hefei 230026, PR China.
| | - Chaofeng Zhu
- Laboratory of Basic Research in Biomass Conversion and Utilization, University of Science and Technology of China, Hefei 230026, PR China
| | - Jindong Wang
- Laboratory of Basic Research in Biomass Conversion and Utilization, University of Science and Technology of China, Hefei 230026, PR China
| | - Hou-Min Chang
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695-8005, USA
| | - Hasan Jameel
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695-8005, USA
| | - Xiaosen Li
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| |
Collapse
|
10
|
Muraleedharan MN, Zouraris D, Karantonis A, Topakas E, Sandgren M, Rova U, Christakopoulos P, Karnaouri A. Effect of lignin fractions isolated from different biomass sources on cellulose oxidation by fungal lytic polysaccharide monooxygenases. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:296. [PMID: 30386433 PMCID: PMC6204277 DOI: 10.1186/s13068-018-1294-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/15/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that oxidatively cleave recalcitrant lignocellulose in the presence of oxygen or hydrogen peroxide as co-substrate and a reducing agent as electron donor. One of the possible systems that provide electrons to the LPMOs active site and promote the polysaccharide degradation involves the mediation of phenolic agents, such as lignin, low-molecular-weight lignin-derived compounds and other plant phenols. In the present work, the interaction of the bulk insoluble lignin fraction extracted from pretreated biomass with LPMOs and the ability to provide electrons to the active site of the enzymes is studied. RESULTS The catalytic efficiency of three LPMOs, namely MtLPMO9 with C1/C4 regioselectivity, PcLPMO9D which is a C1 active LPMO and NcLPMO9C which is a C4 LPMO, was evaluated in the presence of different lignins. It was correlated with the physicochemical and structural properties of lignins, such as the molecular weight and the composition of aromatic and aliphatic hydroxyl groups. Moreover, the redox potential of lignins was determined with the use of large amplitude Fourier Transform alternating current cyclic voltammetry method and compared to the formal potential of the Cu (II) center in the active site of the LPMOs, providing more information about the lignin-LPMO interaction. The results demonstrated the existence of low-molecular weight lignin-derived compounds that are diffused in the reaction medium, which are able to reduce the enzyme active site and subsequently utilize additional electrons from the insoluble lignin fraction to promote the LPMO oxidative activity. Regarding the bulk lignin fractions, those isolated from the organosolv pretreated materials served as the best candidates in supplying electrons to the soluble compounds and, finally, to the enzymes. This difference, based on biomass pretreatment, was also demonstrated by the activity of LPMOs on natural substrates in the presence and absence of ascorbic acid as additional reducing agent. CONCLUSIONS Lignins can support the action of LPMOs and serve indirectly as electron donors through low-molecular-weight soluble compounds. This ability depends on their physicochemical and structural properties and is related to the biomass source and pretreatment method.
Collapse
Affiliation(s)
- Madhu Nair Muraleedharan
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Dimitrios Zouraris
- Laboratory of Physical Chemistry and Applied Electrochemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Antonis Karantonis
- Laboratory of Physical Chemistry and Applied Electrochemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Evangelos Topakas
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
- Biotechnology Laboratory, Department of Synthesis and Development of Industrial Processes, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Mats Sandgren
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Anthi Karnaouri
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|