1
|
Cao Y, Yan X, Ran S, Ralph J, Smith RA, Chen X, Qu C, Li J, Liu L. Knockout of the lignin pathway gene BnF5H decreases the S/G lignin compositional ratio and improves Sclerotinia sclerotiorum resistance in Brassica napus. PLANT, CELL & ENVIRONMENT 2022; 45:248-261. [PMID: 34697825 PMCID: PMC9084453 DOI: 10.1111/pce.14208] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 05/22/2023]
Abstract
Ferulate-5-hydroxylase is a key enzyme involved in the conversion of the guaiacyl monolignol to the syringyl monolignol in angiosperms. The monolignol ratio has been proposed to affect biomass recalcitrance and the resistance to plant disease. Stem rot caused by the fungus Sclerotinia sclerotiorum in Brassica napus causes severe losses in its production. To date, there is no information about the effect of the lignin monomer ratio on the resistance to S. sclerotiorum in B. napus. Four dominantly expressed ferulate-5-hydroxylase genes were concertedly knocked out by CRISPR/Cas9 in B. napus, and three mutant lines were generated. The S/G lignin compositional ratio was decreased compared to that of the wild type based on the results of Mӓule staining and 2D-NMR profiling in KO-7. The resistance to S. sclerotiorum in stems and leaves increased for the three f5h mutant lines compared with WT. Furthermore, we found that the stem strength of f5h mutant lines was significantly increased. Overall, we demonstrate for the first time that decreasing the S/G ratio by knocking out of the F5H gene improves S. sclerotiorum resistance in B. napus and increases stem strength.
Collapse
Affiliation(s)
- Yanru Cao
- College of Agronomy and Biotechnology, Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - Xingying Yan
- College of Agronomy and Biotechnology, Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - Shuyao Ran
- College of Agronomy and Biotechnology, Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - John Ralph
- Department of Biochemistry and the D.O.E. Great Lakes Bioenergy Research CenterWisconsin Energy Institute, University of WisconsinMadisonWisconsinUSA
| | - Rebecca A. Smith
- Department of Biochemistry and the D.O.E. Great Lakes Bioenergy Research CenterWisconsin Energy Institute, University of WisconsinMadisonWisconsinUSA
| | - Xueping Chen
- College of Agronomy and Biotechnology, Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - Cunmin Qu
- College of Agronomy and Biotechnology, Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - Jiana Li
- College of Agronomy and Biotechnology, Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| |
Collapse
|
2
|
Fanelli A, Rancour DM, Sullivan M, Karlen SD, Ralph J, Riaño-Pachón DM, Vicentini R, Silva TDF, Ferraz A, Hatfield RD, Romanel E. Overexpression of a Sugarcane BAHD Acyltransferase Alters Hydroxycinnamate Content in Maize Cell Wall. FRONTIERS IN PLANT SCIENCE 2021; 12:626168. [PMID: 33995431 PMCID: PMC8117936 DOI: 10.3389/fpls.2021.626168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/12/2021] [Indexed: 05/11/2023]
Abstract
The purification of hydroxycinnamic acids [p-coumaric acid (pCA) and ferulic acid (FA)] from grass cell walls requires high-cost processes. Feedstocks with increased levels of one hydroxycinnamate in preference to the other are therefore highly desirable. We identified and conducted expression analysis for nine BAHD acyltransferase ScAts genes from sugarcane. The high conservation of AT10 proteins, together with their similar gene expression patterns, supported a similar role in distinct grasses. Overexpression of ScAT10 in maize resulted in up to 75% increase in total pCA content. Mild hydrolysis and derivatization followed by reductive cleavage (DFRC) analysis showed that pCA increase was restricted to the hemicellulosic portion of the cell wall. Furthermore, total FA content was reduced up to 88%, resulting in a 10-fold increase in the pCA/FA ratio. Thus, we functionally characterized a sugarcane gene involved in pCA content on hemicelluloses and generated a C4 plant that is promising for valorizing pCA production in biorefineries.
Collapse
Affiliation(s)
- Amanda Fanelli
- Laboratório de Genômica de Plantas e Bioenergia (PGEMBL), Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, Brazil
| | | | - Michael Sullivan
- U.S. Dairy Forage Research Center, Agricultural Research Service, U.S. Department of Agriculture, Madison, WI, United States
| | - Steven D. Karlen
- Department of Biochemistry, and The Department of Energy’s Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, Madison, WI, United States
| | - John Ralph
- Department of Biochemistry, and The Department of Energy’s Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, Madison, WI, United States
| | - Diego Mauricio Riaño-Pachón
- Laboratório de Biologia Computacional, Evolutiva e de Sistemas, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil
| | - Renato Vicentini
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Tatiane da Franca Silva
- Laboratório de Genômica de Plantas e Bioenergia (PGEMBL), Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, Brazil
| | - André Ferraz
- Laboratório de Ciências da Madeira, Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, Brazil
| | - Ronald D. Hatfield
- U.S. Dairy Forage Research Center, Agricultural Research Service, U.S. Department of Agriculture, Madison, WI, United States
| | - Elisson Romanel
- Laboratório de Genômica de Plantas e Bioenergia (PGEMBL), Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, Brazil
| |
Collapse
|
3
|
Terrell E, Carré V, Dufour A, Aubriet F, Le Brech Y, Garcia-Pérez M. Contributions to Lignomics: Stochastic Generation of Oligomeric Lignin Structures for Interpretation of MALDI-FT-ICR-MS Results. CHEMSUSCHEM 2020; 13:4428-4445. [PMID: 32174017 DOI: 10.1002/cssc.202000239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 06/10/2023]
Abstract
The lack of standards to identify oligomeric molecules is a challenge for the analysis of complex organic mixtures. High-resolution mass spectrometry-specifically, Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS)-offers new opportunities for analysis of oligomers with the assignment of formulae (Cx Hy Oz ) to detected peaks. However, matching a specific structure to a given formula remains a challenge due to the inability of FT-ICR MS to distinguish between isomers. Additional separation techniques and other analyses (e.g., NMR spectroscopy) coupled with comparison of results to those from pure compounds is one route for assignment of MS peaks. Unfortunately, this strategy may be impractical for complete analysis of complex, heterogeneous samples. In this study we use computational stochastic generation of lignin oligomers to generate a molecular library for supporting the assignment of potential candidate structures to compounds detected during FT-ICR MS analysis. This approach may also be feasible for other macromolecules beyond lignin.
Collapse
Affiliation(s)
- Evan Terrell
- Biological Systems Engineering, Washington State University, Pullman, Washington, 99163, USA
| | - Vincent Carré
- LCP-A2MC, FR 3624, Université de Lorraine, ICPM, 57078, Metz Cedex 03, France
| | - Anthony Dufour
- LRGP, CNRS, Université de Lorraine, ENSIC, 54000, Nancy, France
| | - Frédéric Aubriet
- LCP-A2MC, FR 3624, Université de Lorraine, ICPM, 57078, Metz Cedex 03, France
| | - Yann Le Brech
- LRGP, CNRS, Université de Lorraine, ENSIC, 54000, Nancy, France
| | - Manuel Garcia-Pérez
- Biological Systems Engineering, Washington State University, Pullman, Washington, 99163, USA
- Bioproducts, Sciences, & Engineering Laboratory, Washington State University Tri-Cities, Richland, Washington, 99354, USA
| |
Collapse
|
4
|
Underlin EN, Frommhagen M, Dilokpimol A, van Erven G, de Vries RP, Kabel MA. Feruloyl Esterases for Biorefineries: Subfamily Classified Specificity for Natural Substrates. Front Bioeng Biotechnol 2020; 8:332. [PMID: 32391342 PMCID: PMC7191039 DOI: 10.3389/fbioe.2020.00332] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/25/2020] [Indexed: 12/21/2022] Open
Abstract
Feruloyl esterases (FAEs) have an important role in the enzymatic conversion of lignocellulosic biomass by decoupling plant cell wall polysaccharides and lignin. Moreover, FAEs release anti-oxidative hydroxycinnamic acids (HCAs) from biomass. As a plethora of FAE candidates were found in fungal genomes, FAE classification related to substrate specificity is an indispensability for selection of most suitable candidates. Hence, linking distinct substrate specificities to a FAE classification, such as the recently classified FAE subfamilies (SF), is a promising approach to improve the application of these enzymes for a variety of industrial applications. In total, 14 FAEs that are classified members of SF1, 5, 6, 7, 9, and 13 were tested in this research. All FAEs were investigated for their activity toward a variety of substrates: synthetic model substrates, plant cell wall-derived substrates, including lignin, and natural substrates. Released HCAs were determined using reverse phase-ultra high performance liquid chromatography coupled to UV detection and mass spectrometry. Based on this study, FAEs of SF5 and SF7 showed the highest release of FA, pCA, and diFAs over the range of substrates, while FAEs of SF6 were comparable but less pronounced for diFAs release. These results suggest that SF5 and SF7 FAEs are promising enzymes for biorefinery applications, like the production of biofuels, where a complete degradation of the plant cell wall is desired. In contrast, SF6 FAEs might be of interest for industrial applications that require a high release of only FA and pCA, which are needed as precursors for the production of biochemicals. In contrast, FAEs of SF1, 9 and 13 showed an overall low release of HCAs from plant cell wall-derived and natural substrates. The obtained results substantiate the previous SF classification as a useful tool to predict the substrate specificity of FAEs, which eases the selection of FAE candidates for industrial applications.
Collapse
Affiliation(s)
- Emilie N. Underlin
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, Netherlands
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Matthias Frommhagen
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Gijs van Erven
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Mirjam A. Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|