1
|
Tang T, Chen Y, Sun K, Teng Y, Wei F, Isimjan TT, Guo J, Tian J, Yang X. Engineering Mn-doped Co-based heterostructures with oxygen vacancies toward efficient industrial-scale water oxidation catalysis. J Colloid Interface Sci 2025; 690:137314. [PMID: 40090265 DOI: 10.1016/j.jcis.2025.137314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Developing efficient and durable catalysts for the oxygen evolution reaction (OER) is essential for advancing water-splitting technologies. In this study, we present a self-supported Mn0.10Co0.90-CoCo2O4/NF catalyst featuring a 2D/2D heterostructure, consisting of nanowire arrays coated with ultrathin nanosheets. This unique architecture forms interconnected 3D porous channels, enhancing electrolyte penetration, oxygen diffusion, and mass transport. X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and zeta potential (ζ) measurements reveal that Mn doping facilitates surface reconstruction and increases oxygen vacancies, optimizing the electronic structure and boosting catalytic activity. In situ Raman spectroscopy confirms that CoOOH is the active center, while operando electrochemical impedance spectroscopy demonstrates that strong electronic interactions at the heterogeneous interface enhance charge transfer. The Mn0.10Co0.90-CoCo2O4/NF catalyst exhibits good electrocatalytic performance, achieving low overpotentials (178/233 mV at 10/50 mA cm-2) and exceptional stability (50 mA cm-2 for 280 h) in alkaline electrolytes. This study underscores the synergistic effects of oxygen vacancy engineering, Mn-Co interactions, and a hierarchical structure in improving conductivity, active site accessibility, and reaction kinetics. Mn0.10Co0.90-CoCo2O4/NF emerges as a promising, cost-effective alternative to noble metal catalysts for industrial-scale water electrolysis applications.
Collapse
Affiliation(s)
- Tingting Tang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yongle Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Kuoteng Sun
- Liuzhou Bureau of EHV Transmission Company of China Southern Power Grid Co. Ltd, Liuzhou 545006, China
| | - Yanfang Teng
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Fengli Wei
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jingya Guo
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Jianniao Tian
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
2
|
Ma J, Gao Y, Gui R, Ren P, Su L, Wei J, Wang Q. Substrate engineering-enhanced low-temperature NO x and CO removal by Co 1Mn 2O x@CuO/copper mesh monolithic catalyst. J Colloid Interface Sci 2025; 697:137936. [PMID: 40414030 DOI: 10.1016/j.jcis.2025.137936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 05/09/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
This paper addresses the challenges of simultaneously removing nitrogen oxides (NOx) and carbon monoxide (CO) from industrial flue gas at low temperatures. A highly efficient Co1Mn2Ox@CuO/copper mesh (CM) monolithic catalyst with higher oxygen vacancies was developed by growing Cu(OH)2 nanorods in-situ on a copper mesh and subsequently synthesizing via a hydrothermal method. Experimental results show that the Co1Mn2Ox@CuO/CM catalyst can achieve 99.7 % NOx conversion and 99.4 % CO conversion at 160 °C, with strong resistance to H2O and SO2 and outstanding long-term stability. Characterization results demonstrated that the excellent catalytic performance can be ascribed to the presence of abundant high-valent Co3+, Mn4+, and Cu2+ species, an increased number of reducible species, more acidic sites, and a higher concentration of oxygen vacancies. The interaction between ammonia-based selective catalytic reduction (NH3-SCR) and CO oxidation reactions revealed that NH3 primarily inhibited CO oxidation, whereas CO had no significant inhibitory effect on NH3-SCR. Additionally, this study explored the factors contributing to the enhanced water resistance and the underlying mechanisms of both NH3-SCR and CO oxidation reactions using in-situ diffuse reflectance infrared transform spectroscopy (in-situ DRIFTS). In terms of application, computational fluid dynamics (CFD) simulations demonstrated that the copper mesh-based monolithic catalyst provided better heat distribution, preventing partial deactivation and contributed to the improvement of catalytic activity. This research provides an efficient solution for industrial flue gas treatment and highlights its potential for environmental applications.
Collapse
Affiliation(s)
- Jianing Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Yanshan Gao
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| | - Rongrong Gui
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Penghui Ren
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Liyao Su
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Jiaqi Wei
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Qiang Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Sun Y, Sun P, Wang J, Zhuang Y, Wu Y, Li Z. Mn-N 5 structure between poly-porphyrin manganese and 3D N-doped graphene to enhance bifunctional oxygen catalytic performance. J Colloid Interface Sci 2025; 686:711-721. [PMID: 39919516 DOI: 10.1016/j.jcis.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/23/2025] [Accepted: 02/01/2025] [Indexed: 02/09/2025]
Abstract
Covalent organic framework (COF) are highly promising materials in the field of oxygen catalysis. Herein, fully conjugated polymeric porphyrin manganese (PPorMn) with large delocalization energy and high stability, is synthesized by the decarboxylation self-polymerization of meso-5, 10, 15, 20-tetra (4-carboxy porphyrin manganese) (TcPorMn). The gap of highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO-LUMO) of PPorMn is decreased, enhancing its ability to gain and lose electrons during the catalytic process. The three-dimensional N-doped graphene (3D-NG) with rich pyridinic N can anchor Mn-N4 in PPorMn to form a Mn-N5 bridging structure that facilitates electron transfer. The Mn-pyridinic N forms a chemical bond that beyond the π-π interactions and creates a pathway for electron transfer. This bridging bond, similar as an "electron pump", constantly delivers electrons to the Mn-N5 site, improving the oxygen catalytic activity of PPorMn. PPorMn/3D-NG exhibits efficient E1/2 as 0.90 V vs. RHE and outstanding bifunctional oxygen catalytic performance (ΔE = 0.69 V). The excellent performance of Zinc-air battery (ZABs) shows that it has good application potential in oxygen catalytic energy devices. This work provides a prospective strategy for the design of a novel COF as bifunctional oxygen catalyst.
Collapse
Affiliation(s)
- Yinggang Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology 255049 Zibo City, China
| | - Peng Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology 255049 Zibo City, China
| | - Jigang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology 255049 Zibo City, China
| | - Yanqiong Zhuang
- School of Chemistry and Chemical Engineering, Shandong University of Technology 255049 Zibo City, China
| | - Yinuo Wu
- School of Chemistry and Chemical Engineering, Shandong University of Technology 255049 Zibo City, China
| | - Zhongfang Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology 255049 Zibo City, China.
| |
Collapse
|
4
|
Zhang X, Yang F, Sun S, Wei K, Liu H, Li G, Sun Y, Li X, Qian J, Du S, Li M, Lu Y, Xia C, Che S, Li Y. Boosting oxygen reduction via MnP nanoparticles encapsulated by N, P-doped carbon to Mn single atoms sites for Zn-air batteries. J Colloid Interface Sci 2024; 657:240-249. [PMID: 38039884 DOI: 10.1016/j.jcis.2023.11.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
An electrocatalyst of single-atomic Mn sites with MnP nanoparticles (NPs) on N, P co-doped carbon substrate was constructed to enhance the catalytic activity of oxygen reduction reaction (ORR) through one-pot in situ doping-phosphatization strategy. The optimized MnSA-MnP-980℃ catalyst exhibits an excellent ORR activity in KOH electrolyte with a half-wave potential (E1/2) of 0.88 V (vs. RHE), and the ORR current density of MnSA-MnP-980℃ maintained 97.9 % for over 25000 s chronoamperometric i-t measurement. When using as the cathode, the MnSA-MnP-980℃ displays a peak power density of 51 mW cm-2 in Zinc-Air batteries, which observably outperformed commercial Pt/C (20 wt%). The X-ray photoelectron spectroscopy reveal that the doped P atoms with a strong electron-donating effectively enhances electron cloud density of Mn SAs sites, facilitating the adsorption of O2 molecules. Meanwhile, the introduction of MnP NPs can regulate the electronic structure of Mn SAs sites, making Mn SAs active sites exist in a low oxidation state and are less positively charged, which can supply electrons for ORR process to narrow the adsorption energy barrier of ORR intermediates. This work constructs novel active sites with excellent ORR properties and provides valuable reference for the development of practical application.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China
| | - Fan Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China.
| | - Siyuan Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China
| | - Kexin Wei
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China
| | - Hongchen Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China
| | - Guohua Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China
| | - Yang Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China
| | - Xi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China
| | - Jinxiu Qian
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China
| | - Shaoxiong Du
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China
| | - Mingjie Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China
| | - Yi Lu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China
| | - Chuangui Xia
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China
| | - Sai Che
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China
| | - Yongfeng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China.
| |
Collapse
|
5
|
Zhang J, Xu C, Zhang Y, Li Y, Liu B, Huo P, Liu D, Gui J. Structural and compositional analysis of MOF-derived carbon nanomaterials for the oxygen reduction reaction. Chem Commun (Camb) 2024; 60:2572-2590. [PMID: 38329277 DOI: 10.1039/d3cc05653h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The development of low-cost and efficient cathode catalysts is crucial for the advancement of fuel cells, as the oxygen reduction reaction (ORR) on the cathode is constrained by expensive commercial Pt/C catalysts and a significant energy barrier. Metal-organic frameworks (MOFs) are considered excellent precursors for synthesizing carbon nanomaterials due to their simple synthesis, rich structure and composition. MOF-derived carbon nanomaterials (MDCNM) inherit the morphology of their precursors at low dimensional scales, providing abundant edge defects, larger specific surface area, and excellent electron transport paths. Furthermore, the rich composition of MOFs enables the carbon nanomaterials derived from them to exhibit various physicochemical properties, including stronger electron gaining ability, oxygen affinity, and a higher degree of graphitization, resulting in excellent ORR activity. However, a more detailed analysis is necessary to understand the advantages and mechanisms of MDCNM in the field of the ORR. This review classifies and summarizes the structure and different chemical compositions of MDCNM in low dimensions, and provides an in-depth analysis of the reasons for their improved ORR activity. Additionally, the recent practical applications of MDCNM as cathode material in fuel cells are introduced and analyzed in detail, with a focus on the enhanced electrochemical performance.
Collapse
Affiliation(s)
- Jinjie Zhang
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Chengxiao Xu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Yingjie Zhang
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Yuzheng Li
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Dan Liu
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Binshui West Road 399, Tianjin 300387, China
| | - Jianzhou Gui
- State Key Laboratory of Separation Membranes and Membrane Processes, and School of Material Science and Engineering, Tiangong University, Binshui West Road 399, Tianjin 300387, China.
| |
Collapse
|
6
|
Villanueva-Martínez N, Alegre C, Martínez-Visús I, Lázaro M. Bifunctional oxygen electrocatalysts based on non-critical raw materials: Carbon nanostructures and iron-doped manganese oxide nanowires. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
7
|
Zhang X, Wang X, Guan Z, Fang J, Sui R, Pei J, Qin Y, Wei D, Zhu W, Zhuang Z. An Ultrastable Rechargeable Zinc-Air Battery Using a Janus Superwetting Air Electrode. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52849-52856. [PMID: 36394544 DOI: 10.1021/acsami.2c14657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The rechargeable zinc-air batteries (ZABs) are promising energy storage devices, but their performance is limited by the air electrode, coming from the contradictory wettability requirements of the air electrode at charging and discharging. Herein, to improve the mass transport and adapt to its different requirements when charging and discharging the ZABs, a Janus air electrode was fabricated with a void-rich, superaerophobic oxygen evolution reaction catalytic layer and a dense superhydrophobic oxygen reduction reaction catalytic layer. The ZAB using the Janus air electrode exhibits a low voltage gap of 0.78 V for charging and discharging at 10 mA cm-2, and it can stably work for more than 1 month (1100 cycles) with the decay of only about 10%. Wettability analyses revealed that the Janus superwetting structure provides good electrolyte contact, improves the mass transfer of O2, and prevents electrolyte leakage and flooding, leading to the high performance. These results suggest the advantage of the Janus electrode in reversible energy-converting devices.
Collapse
Affiliation(s)
- Xuejiang Zhang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xingdong Wang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhi Guan
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinjie Fang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Sui
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiajing Pei
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yangyuanxiang Qin
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Wei
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Zhang T, Zhao Z, Li T, Diao Q, Lv L, Li Z. A highly efficient electrocatalyst for oxygen reduction reaction: Spinel MnCo2O4 nanoparticles supported on three-dimensional Nitrogen-doped graphene material with interconnected hierarchical porous nanostructure. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
K Lebechi A, Ipadeola AK, Eid K, Abdullah AM, Ozoemena KI. Porous spinel-type transition metal oxide nanostructures as emergent electrocatalysts for oxygen reduction reactions. NANOSCALE 2022; 14:10717-10737. [PMID: 35861592 DOI: 10.1039/d2nr02330j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Porous spinel-type transition metal oxide (PS-TMO) nanocatalysts comprising two kinds of metal (denoted as AxB3-xO4, where A, B = Co, Ni, Zn, Mn, Fe, V, Sm, Li, and Zn) have emerged as promising electrocatalysts for oxygen reduction reactions (ORRs) in energy conversion and storage systems (ECSS). This is due to the unique catalytic merits of PS-TMOs (such as p-type conductivity, optical transparency, semiconductivity, multiple valence states of their oxides, and rich active sites) and porous morphologies with great surface area, low density, abundant transportation paths for intermediate species, maximized atom utilization and quick charge mobility. In addition, PS-TMOs nanocatalysts are easily prepared in high yield from Earth-abundant and inexpensive metal precursors that meet sustainability requirements and practical applications. Owing to the continued developments in the rational synthesis of PS-TMOs nanocatalysts for ORRs, it is utterly imperative to provide timely updates and highlight new advances in this research area. This review emphasizes recent research advances in engineering the morphologies and compositions of PS-TMOs nanocatalysts in addition to their mechanisms, to decipher their structure-activity relationships. Also, the ORR mechanisms and fundamentals are discussed, along with the current barriers and future outlook for developing the next generation of PS-TMOs nanocatalysts for large-scale ECSS.
Collapse
Affiliation(s)
- Augustus K Lebechi
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South Africa.
| | | | - Kamel Eid
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar.
| | | | - Kenneth I Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South Africa.
| |
Collapse
|
10
|
Zhang T, han Q, Li T, Lv L, Luo W, Li Z. An efficient electrocatalyst toward oxygen reduction reaction: State-of-the-art of hierarchical porous nanostructure of Mn3O4 supported on three-dimensional graphene. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Co/Co
2
P Nanoparticles Encapsulated within Hierarchically Porous Nitrogen, Phosphorus, Sulfur Co‐doped Carbon as Bifunctional Electrocatalysts for Rechargeable Zinc‐Air Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202101246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Liu Y, Bao J, Li Z, Zhang L, Zhang S, Wang L, Niu X, Sun P, Xu L. Large-scale defect-rich iron/nitrogen co-doped graphene-based materials as the excellent bifunctional electrocatalyst for liquid and flexible all-solid-state zinc-air batteries. J Colloid Interface Sci 2021; 607:1201-1214. [PMID: 34571307 DOI: 10.1016/j.jcis.2021.09.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022]
Abstract
Defect-engineering in transition-metal-doped carbon-based catalyst plays an essential role for improving the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performance. Herein, we report a ball-milling induced defect assisted with ZnCl2 strategy for fabricating defect-rich iron/nitrogen co-doped graphene-based materials (Fe-N-G). The substantial mechanical shear forces and the constant corrosion to the carbon matrix by ZnCl2 lead to the creation of abundant defects in graphene-based materials, which facilitates doping for heteroatoms. The defect-rich Fe-N-G catalyst with abundant Fe-Nx active sites displays excellent ORR performance. For OER, the over potential for Fe-N-G outperforms that of RuO2 in 1 M KOH at 10 mA cm-2. The Density Functional Theory calculations unravel that the impressive OER performance is attributable to the introduction of abundant defects. Additionally, the liquid and all-solid-state zinc-air batteries equipped with the prepared material as the air cathode demonstrate high power density, high specific capacity, and long charge-discharge stability. This work offers a practical method for manufacturing high-performance electrocatalysts for environmental and energy-related fields.
Collapse
Affiliation(s)
- Yuepeng Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Jiehua Bao
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, PR China
| | - Zhongfang Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Shenzhi Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Xueliang Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Peng Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Liping Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| |
Collapse
|
13
|
Kwon S, Lee JH. Temperature Effect on the Topotatic Synthesis of Spinel
MnCoO
Nanoparticles for Efficient Oxygen Reduction Electrocatalyst. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sunglun Kwon
- Department of Chemistry The Catholic University of Korea Bucheon 14662 South Korea
| | - Jong Hyeon Lee
- Department of Chemistry The Catholic University of Korea Bucheon 14662 South Korea
| |
Collapse
|
14
|
Sun RM, Yao YQ, Wang AJ, Fang KM, Zhang L, Feng JJ. One-step pyrolysis synthesis of nitrogen, manganese-codoped porous carbon encapsulated cobalt-iron nanoparticles with superior catalytic activity for oxygen reduction reaction. J Colloid Interface Sci 2021; 592:405-415. [PMID: 33706153 DOI: 10.1016/j.jcis.2021.02.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 11/29/2022]
Abstract
Replacing precious metal catalysts with low-price and abundant catalysts is one of urgent goals for green and sustainable energy development. It is imperative yet challenging to search low-cost, high-efficiency, and long-durability electrocatalysts for oxygen reduction reaction (ORR) in energy conversion devices. Herein, three-dimensional low-cost Co3Fe7 nanoparticles/nitrogen, manganese-codoped porous carbon (Co3Fe7/N, Mn-PC) was synthesized with the mixture of dicyandiamide, cobalt (II) tetramethoxyphenylporphyrin (Co(II)TMOPP), hemin, and manganese acetate by one-step pyrolysis and then acid etching. The resultant Co3Fe7/N, Mn-PC exhibited excellent durability and prominent ORR activity with more positive onset potential (Eonset, 0.98 V) and half-wave potential (E1/2, 0.87 V) in 0.1 M KOH electrolyte, coupled with strong methanol resistance. The pyrolysis temperature and optimal balance of graphite with pyridine-nitrogen are of significance for the ORR performance. The prepared Co3Fe7/N, Mn-PC displayed excellent ORR performance over commercial Pt/C in the identical environment. It was ascribed to the uniform 3D architecture, Mn- and N-doping effects by finely adjusting the electronic structures, coupled with the synergistic catalytic effects of multi-compositions and multi-active sites. This work provides some constructive guidelines for preparation of low-cost and high-efficiency ORR electrocatalysts.
Collapse
Affiliation(s)
- Rui-Min Sun
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - You-Qiang Yao
- Institute of Advanced Manufacturing Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Ke-Ming Fang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
| | - Lu Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
15
|
Shi C, Ullah S, Li K, Wang W, Zhang R, Pan L, Zhang X, Zou JJ. Low-temperature synthesis of ultrasmall spinel Mn Co3-O4 nanoparticles for efficient oxygen reduction. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63624-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Controllable Fabrication of Co3−xMnxO4 with Tunable External Co3+/Co2+ Ratio for Promoted Oxygen Reduction Reaction. Catal Letters 2020. [DOI: 10.1007/s10562-020-03381-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Zhang T, Li Z, Wang L, Zhang S, Liu Y, Niu X. Highly Exposed Active Sites of Fe/N Co-doped Defect-rich Graphene as an Efficient Electrocatalyst for Oxygen Reduction Reaction. Chem Asian J 2020; 15:3527-3534. [PMID: 32964661 DOI: 10.1002/asia.202000903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/06/2020] [Indexed: 11/09/2022]
Abstract
A defect-rich interconnected hierarchical three-dimensional Fe and N co-doped graphene has been prepared by a facile synthesis with poly (2,5-benzimidazole) (ABPBI) as nitrogen and carbon sources and CaCO3 as the template. ABPBI possesses abundant nitrogen, and pyrolysis of ABPBI is helpful to form graphene structure. CaCO3 and its decomposition products CO2 can promote the formation of interconnected hierarchical porous three-dimensional graphene, which possesses more defects and exposed active sites. Benefiting from the defective catalysis mechanism, rich defect catalysts are applied as electrode materials to enhance the catalytic performance for oxygen reduction reaction (ORR). Electrochemically, the half-wave potential (E1/2 ) of Fe-3D-NG#800 is 0.84 V (vs. RHE), and the accelerated durability tests shows the E1/2 of Fe-3D-NG#800 shifted by a 21 mV drop after cyclic voltammetry scanning for 5000 cycles. Therefore, Fe-3D-NG#800 has excellent activity and durability than 20 wt % Pt/C.
Collapse
Affiliation(s)
- Tingwei Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China.,School of Chemistry and Life Science, Anshan Normal University, Anshan, 114007, P. R. China
| | - Zhongfang Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China
| | - Shenzhi Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China
| | - Yuepeng Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China
| | - Xueliang Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China
| |
Collapse
|
18
|
Zhang T, Li Z, Sun P, Wang L, Niu X, Wang S. α-MnO2 nanorods supported on three dimensional graphene as high activity and durability cathode electrocatalysts for magnesium-air fuel cells. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.04.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Thiruppathi AR, Sidhureddy B, Boateng E, Soldatov DV, Chen A. Synthesis and Electrochemical Study of Three-Dimensional Graphene-Based Nanomaterials for Energy Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1295. [PMID: 32630248 PMCID: PMC7408301 DOI: 10.3390/nano10071295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022]
Abstract
Graphene is an attractive soft material for various applications due to its unique and exclusive properties. The processing and preservation of 2D graphene at large scales is challenging due to its inherent propensity for layer restacking. Three-dimensional graphene-based nanomaterials (3D-GNMs) preserve their structures while improving processability along with providing enhanced characteristics, which exhibit some notable advantages over 2D graphene. This feature article presents recent trends in the fabrication and characterization of 3D-GNMs toward the study of their morphologies, structures, functional groups, and chemical compositions using scanning electron microscopy, X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Owing to the attractive properties of 3D-GNMs, which include high surface areas, porous structures, improved electrical conductivity, high mechanical strength, and robust structures, they have generated tremendous interest for various applications such as energy storage, sensors, and energy conversion. This article summarizes the most recent advances in electrochemical applications of 3D-GNMs, pertaining to energy storage, where they can serve as supercapacitor electrode materials and energy conversion as oxygen reduction reaction catalysts, along with an outlook.
Collapse
Affiliation(s)
| | | | | | | | - Aicheng Chen
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.R.T.); (B.S.); (E.B.); (D.V.S.)
| |
Collapse
|
20
|
Aasen DA, Shen Y, Ivey DG. Zn‐Based Oxides Anchored to Nitrogen‐Doped Carbon Nanotubes as Efficient Bifunctional Catalysts for Zn‐Air Batteries. ChemElectroChem 2020. [DOI: 10.1002/celc.202000362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Drew A. Aasen
- Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada T6G 1H9
| | - Yi Shen
- Department of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei China
| | - Douglas G. Ivey
- Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada T6G 1H9
| |
Collapse
|
21
|
Li Y, Li Q, Wang H, Zhang L, Wilkinson DP, Zhang J. Recent Progresses in Oxygen Reduction Reaction Electrocatalysts for Electrochemical Energy Applications. ELECTROCHEM ENERGY R 2019. [DOI: 10.1007/s41918-019-00052-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
Electrochemical energy storage systems such as fuel cells and metal–air batteries can be used as clean power sources for electric vehicles. In these systems, one necessary reaction at the cathode is the catalysis of oxygen reduction reaction (ORR), which is the rate-determining factor affecting overall system performance. Therefore, to increase the rate of ORR for enhanced system performances, efficient electrocatalysts are essential. And although ORR electrocatalysts have been intensively explored and developed, significant breakthroughs have yet been achieved in terms of catalytic activity, stability, cost and associated electrochemical system performance. Based on this, this review will comprehensively present the recent progresses of ORR electrocatalysts, including precious metal catalysts, non-precious metal catalysts, single-atom catalysts and metal-free catalysts. In addition, major technical challenges are analyzed and possible future research directions to overcome these challenges are proposed to facilitate further research and development toward practical application.
Graphic Abstract
Collapse
|
22
|
Gui L, Miao X, Lei C, Wang K, Zhou W, He B, Wang Q, Zhao L. Co 3+ -Rich Na 1.95 CoP 2 O 7 Phosphates as Efficient Bifunctional Catalysts for Oxygen Evolution and Reduction Reactions in Alkaline Solution. Chemistry 2019; 25:11007-11014. [PMID: 31237958 DOI: 10.1002/chem.201901848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/07/2019] [Indexed: 01/08/2023]
Abstract
Implementing sustainable energy conversion and storage technologies is highly reliant on crucial oxygen electrocatalysis, such as the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). However, the pursuit of low cost, energetic efficient and robust bifunctional catalysts for OER and ORR remains a great challenge. Herein, the novel Na-ion-deficient Na2-x CoP2 O7 catalysts are proposed to efficiently electrocatalyze OER and ORR in alkaline solution. The engineering of Na-ion deficiency can tune the electronic structure of Co, and thus tailor the intrinsically electrocatalytic performance. Among the sodium cobalt phosphate catalysts, the Na1.95 CoP2 O7 (NCPO5) catalyst exhibits the lowest ΔE (EJ10,OER -EJ-1,ORR ) of only 0.86 V, which favorably outperforms most of the reported non-noble metal catalysts. Moreover, the Na-ion deficiency can stabilize the phase structure and morphology of NCPO5 during the OER and ORR processes. This study highlights the Na-ion deficient Na2-x CoP2 O7 as a promising class of low-cost, highly active and robust bifunctional catalysts for OER and ORR.
Collapse
Affiliation(s)
- Liangqi Gui
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoyun Miao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Chengjun Lei
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Kailin Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Wei Zhou
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.,Zhejiang Institute, China University of Geosciences (Wuhan), Hangzhou, 311305, China.,Engineering Research Center of Nano-Geo Materials, of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
| | - Beibei He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.,Zhejiang Institute, China University of Geosciences (Wuhan), Hangzhou, 311305, China.,Engineering Research Center of Nano-Geo Materials, of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
| | - Qing Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.,Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Ling Zhao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.,Zhejiang Institute, China University of Geosciences (Wuhan), Hangzhou, 311305, China.,Engineering Research Center of Nano-Geo Materials, of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
23
|
Lv Y, Li Z, Song M, Sun P, Yin X, Wang S. Preparation and properties of ZrPA doped CMPSU cross-linked PBI based high temperature and low humidity proton exchange membranes. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|