1
|
Tang F, Wu Z, Yang C, Osenberg M, Hilger A, Dong K, Markötter H, Manke I, Sun F, Chen L, Cui G. Synchrotron X-Ray Tomography for Rechargeable Battery Research: Fundamentals, Setups and Applications. SMALL METHODS 2021; 5:e2100557. [PMID: 34928071 DOI: 10.1002/smtd.202100557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/09/2021] [Indexed: 06/14/2023]
Abstract
Understanding the complicated interplay of the continuously evolving electrode materials in their inherent 3D states during the battery operating condition is of great importance for advancing rechargeable battery research. In this regard, the synchrotron X-ray tomography technique, which enables non-destructive, multi-scale, and 3D imaging of a variety of electrode components before/during/after battery operation, becomes an essential tool to deepen this understanding. The past few years have witnessed an increasingly growing interest in applying this technique in battery research. Hence, it is time to not only summarize the already obtained battery-related knowledge by using this technique, but also to present a fundamental elucidation of this technique to boost future studies in battery research. To this end, this review firstly introduces the fundamental principles and experimental setups of the synchrotron X-ray tomography technique. After that, a user guide to its application in battery research and examples of its applications in research of various types of batteries are presented. The current review ends with a discussion of the future opportunities of this technique for next-generation rechargeable batteries research. It is expected that this review can enhance the reader's understanding of the synchrotron X-ray tomography technique and stimulate new ideas and opportunities in battery research.
Collapse
Affiliation(s)
- Fengcheng Tang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Zhibin Wu
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Chao Yang
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109, Berlin, Germany
| | - Markus Osenberg
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109, Berlin, Germany
| | - André Hilger
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109, Berlin, Germany
| | - Kang Dong
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109, Berlin, Germany
| | - Henning Markötter
- Bundesanstalt für Materialforschung und -Prüfung, 12205, Berlin, Germany
| | - Ingo Manke
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109, Berlin, Germany
| | - Fu Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Libao Chen
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Guanglei Cui
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| |
Collapse
|
2
|
Interplay between electrochemical reactions and mechanical responses in silicon-graphite anodes and its impact on degradation. Nat Commun 2021; 12:2714. [PMID: 33976126 PMCID: PMC8113583 DOI: 10.1038/s41467-021-22662-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/24/2021] [Indexed: 11/08/2022] Open
Abstract
Durability of high-energy throughput batteries is a prerequisite for electric vehicles to penetrate the market. Despite remarkable progresses in silicon anodes with high energy densities, rapid capacity fading of full cells with silicon-graphite anodes limits their use. In this work, we unveil degradation mechanisms such as Li+ crosstalk between silicon and graphite, consequent Li+ accumulation in silicon, and capacity depression of graphite due to silicon expansion. The active material properties, i.e. silicon particle size and graphite hardness, are then modified based on these results to reduce Li+ accumulation in silicon and the subsequent degradation of the active materials in the anode. Finally, the cycling performance is tailored by designing electrodes to regulate Li+ crosstalk. The resultant full cell with an areal capacity of 6 mAh cm-2 has a cycle life of >750 cycles the volumetric energy density of 800 Wh L-1 in a commercial cell format.
Collapse
|
3
|
Schmidt H, Jerliu B, Hüger E, Stahn J. Volume expansion of amorphous silicon electrodes during potentiostatic lithiation of Li-ion batteries. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106738] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|