1
|
Bandelli D, Mastrangelo R, Poggi G, Chelazzi D, Baglioni P. New sustainable polymers and oligomers for Cultural Heritage conservation. Chem Sci 2024; 15:2443-2455. [PMID: 38362426 PMCID: PMC10866357 DOI: 10.1039/d3sc03909a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
The development of "green" chemistry materials with enhanced properties is a central topic in numerous applicative fields, including the design of polymeric systems for the conservation of works of art. Traditional approaches in art restoration comprise polymer thickeners and viscous dispersions to partially control solvents in the removal of soil or aged varnishes/coatings from artifacts. Alternatively, polymeric gel networks can be specifically designed to grant full control of the cleaning action, yielding safe, time- and cost-effective restorations. The selection of polymers and oligomers in gel design is crucial to tune solvent upload, retention, and controlled release over the sensitive artistic surfaces. Starting from an overview of traditional polymer formulations and state-of-the-art gel systems for cleaning works of art, we provide here the design of a new class of gels, focusing on the selection of oligomers to achieve gels with tailored hydrophilicity/hydrophobicity. We evaluated the oligomers Hydrophilic-Lipophilic Balance (HLB) by developing, for the first time, a novel methodology combining SEC and DOSY NMR analysis, which was tested on a library of "green" oligoesters synthesized by polycondensation and poorly explored in the literature. Oligomers with moderate polydispersity were chosen to validate the new protocol as a robust tool for designing polymeric gels even on industrial scale. The methodology is more time-effective than traditional methods, and gives additional insights on the oligomers physico-chemical nature, evaluating their compatibility with different solvents. Then, we used the selected oligoesters with castor oil to obtain a new class of organogels able to upload solvents with varying polarity, which effectively removed different types of unwanted layers typically found in painting restoration. These results validate the oligomers screening approach and the new class of gels as promising chemical processes/materials in art preservation. The methodology can potentially allow evaluation of HLB also for small molecules (e.g., surfactants), opening for the formulation of polymers solutions/gels beyond Cultural Heritage conservation, as in pharmaceutics, cosmetics, food industry, tissue engineering, agriculture, and others.
Collapse
Affiliation(s)
- Damiano Bandelli
- Department of Chemistry "Ugo Schiff", University of Florence via della Lastruccia 3, Sesto Fiorentino 50019 Florence Italy
| | - Rosangela Mastrangelo
- Department of Chemistry "Ugo Schiff", University of Florence via della Lastruccia 3, Sesto Fiorentino 50019 Florence Italy
| | - Giovanna Poggi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence via della Lastruccia 3, Sesto Fiorentino 50019 Florence Italy
| | - David Chelazzi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence via della Lastruccia 3, Sesto Fiorentino 50019 Florence Italy
| | - Piero Baglioni
- CSGI and Department of Chemistry "Ugo Schiff", University of Florence via della Lastruccia 3, Sesto Fiorentino 50019 Florence Italy
| |
Collapse
|
2
|
Zhu J, Ding J, Li Y, Wang Q, Yang F, Jia C, Zhang Y, Zhao X, Dong W, Wang J, Lu Z, Li X. Realizing Nanolime Aqueous Dispersion via Ionic Liquid Surface Modification to Consolidate Stone Relics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37422798 DOI: 10.1021/acs.langmuir.3c01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
After decades of research in the conservation of cultural heritage, nanolime (NL) has emerged as a potential alternative inorganic material to the frequently used organic materials. However, its poor kinetic stability in water has been a major challenge that restricted its penetration depth through cultural relics and resulted in unsatisfactory conservation outcomes. Here, for the first time, we realize NL water dispersion by modification of ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) via a sample aqueous solution deposit method. Our findings indicate that the cation of the ionic liquid (IL) binds strongly to the surface of NL particles (IL-NL) by forming hydrogen bonds with Ca(OH)2 facets. The absorption of IL causes an unexpected significant alteration in the morphology of NL particles and results in a drastic reduction in NL's size. More importantly, this absorption endows NL excellent kinetic stability dispersed into water and implements NL water dispersion, which makes a breakthrough in terms of extreme poor kinetic stability of as-synthesized NL and commercial NL in water. The mechanism driving IL-NL water dispersion is explained by Stern theory. In the context of consolidating weathered stone, the presence of IL may delay carbonation of NL but the penetration depth of IL-NL through stone samples is three times deeper than that of as-synthesized and commercial NLs. Additionally, the consolidation strength of IL-NL is similar to that of as-synthesized NL and commercial NL. Moreover, IL-NL has no significant impact on the permeability, pore size, and microstructure of consolidated stone relics. Our research contributes to the field of NL-related materials and will enhance the dissemination and utilization of NL-based materials in the preservation of water-insensitive cultural heritage.
Collapse
Affiliation(s)
- Jinmeng Zhu
- NPU Institute of Culture and Heritage, Key Laboratory of Archaeological Exploration and Cultural Heritage Conservation Technology (NPU), Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China
- Key Scientific Research Base of Conservation & Restoration for Mural as Collection and Materials Science in State Administration of Cultural Heritage, Xi'an 710061, China
| | - Jinghan Ding
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an 710072, China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Qi Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an 710072, China
| | - Fan Yang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an 710072, China
| | - Cong Jia
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, P. R. China
| | - Yaxu Zhang
- Shaanxi Provincial Institute of Archaeology, Xi'an 710054, China
| | - Xichen Zhao
- Shaanxi Provincial Institute of Archaeology, Xi'an 710054, China
| | - Wenqiang Dong
- NPU Institute of Culture and Heritage, Key Laboratory of Archaeological Exploration and Cultural Heritage Conservation Technology (NPU), Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jia Wang
- Center for Wall Painting Protection, Shaanxi History Museum, Xi'an 710061, China
| | - Zhiyong Lu
- Center for Wall Painting Protection, Shaanxi History Museum, Xi'an 710061, China
| | - Xuanhua Li
- NPU Institute of Culture and Heritage, Key Laboratory of Archaeological Exploration and Cultural Heritage Conservation Technology (NPU), Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China
- Gansu Provincial Research Center for Conservation of Dunhuang Cultural Heritage, Dunhuang 736200, China
| |
Collapse
|
3
|
Gomez-Villalba LS, Salcines C, Fort R. Application of Inorganic Nanomaterials in Cultural Heritage Conservation, Risk of Toxicity, and Preventive Measures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1454. [PMID: 37176999 PMCID: PMC10180185 DOI: 10.3390/nano13091454] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
Nanotechnology has allowed for significant progress in architectural, artistic, archaeological, or museum heritage conservation for repairing and preventing damages produced by deterioration agents (weathering, contaminants, or biological actions). This review analyzes the current treatments using nanomaterials, including consolidants, biocides, hydrophobic protectives, mechanical resistance improvers, flame-retardants, and multifunctional nanocomposites. Unfortunately, nanomaterials can affect human and animal health, altering the environment. Right now, it is a priority to stop to analyze its advantages and disadvantages. Therefore, the aims are to raise awareness about the nanotoxicity risks during handling and the subsequent environmental exposure to all those directly or indirectly involved in conservation processes. It reports the human-body interaction mechanisms and provides guidelines for preventing or controlling its toxicity, mentioning the current toxicity research of main compounds and emphasizing the need to provide more information about morphological, structural, and specific features that ultimately contribute to understanding their toxicity. It provides information about the current documents of international organizations (European Commission, NIOSH, OECD, Countries Normative) about worker protection, isolation, laboratory ventilation control, and debris management. Furthermore, it reports the qualitative risk assessment methods, management strategies, dose control, and focus/receptor relationship, besides the latest trends of using nanomaterials in masks and gas emissions control devices, discussing their risk of toxicity.
Collapse
Affiliation(s)
- Luz Stella Gomez-Villalba
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| | - Ciro Salcines
- Infrastructures Service, Health and Safety Unit, University of Cantabria, Pabellón de Gobierno, Avenida de los Castros 54, 39005 Santander, Spain
| | - Rafael Fort
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| |
Collapse
|
4
|
Fistos T, Fierascu I, Fierascu RC. Recent Developments in the Application of Inorganic Nanomaterials and Nanosystems for the Protection of Cultural Heritage Organic Artifacts. NANOMATERIALS 2022; 12:nano12020207. [PMID: 35055226 PMCID: PMC8778391 DOI: 10.3390/nano12020207] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023]
Abstract
Cultural heritage (CH) represents human identity and evidence of the existence and activities that people have left over time. In response to the action of aggressive degrading factors, different materials have been developed and used to protect cultural heritage artifacts. The discovery of optimal materials for this purpose also raises several problems, mainly related to their compatibility with the support material, the most important aspect being that they must preserve their aesthetic characteristics. In this context, the present review paper aims to provide a critical discussion about the possibilities of using different inorganic nanomaterials and recipes for the conservation of cultural heritage objects of organic nature (such as paper, wood, and other support materials). In addition, also are covered different aspect concerning protection mechanisms and application methods as well as future perspectives in this area.
Collapse
Affiliation(s)
- Toma Fistos
- Emerging Nanotechnologies Group, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Irina Fierascu
- Emerging Nanotechnologies Group, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania;
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
- Correspondence: (I.F.); (R.C.F.)
| | - Radu Claudiu Fierascu
- Emerging Nanotechnologies Group, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Correspondence: (I.F.); (R.C.F.)
| |
Collapse
|
5
|
Preliminary Studies of the Effects of Nanoconsolidants on Mural Paint Layers with a Lack of Cohesion. HERITAGE 2021. [DOI: 10.3390/heritage4040183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper reports the preliminary results of a comparative analysis of the effects of three consolidants on the color appearance of fresco paint layers affected by lack of cohesion. In vitro assays were performed with a laboratory-synthesized nanolime, a commercial nanolime (CaLoSiL® IP25), and a commercial acrylic resin (PrimalTM SF-016 ER®) applied by nebulization over two sets of replicas of buon and lime fresco painted with red and yellow ochres and smalt pigments. The paint layers were surveyed before, one week, and one month after treatment with technical photography in the visible range (Vis) and ultraviolet-induced fluorescence in the visible range (UVF), as well as optical microscopy (OM-Vis), colorimetry, spectrophotometry, and scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (SEM-EDS). Experimental work also comprised the synthesis of nanolime and its characterization by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetry analysis (TGA-DTG). The results show no alteration on pigments’ spectral curves and elemental composition. The increase in the CIEL* coordinate and ∆E color variation noticed after the treatment with the nanolimes is associated with a white haze formation on the paint surfaces. The impact on color appearance is higher on the darker tones.
Collapse
|
6
|
Sankar Panda S, Kumar Bisaria S, Singh M. The spectroscopic and microscopic evaluation of cellulose used in conservation of archival materials. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Basic Protocol for On-Site Testing Consolidant Nanoparticles on Stone Cultural Heritage. HERITAGE 2019. [DOI: 10.3390/heritage2040168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Currently the application of consolidants based on nanoparticles is common practice among restorers. Consolidants should not modify the properties of original materials according to international recommendation, which requires previous studies to decide the optimal option. The selection must be based on empirical results, and not only in the expertise of the restorer, because the consolidant’s effectiveness is influenced by its own properties and other factors such as the characteristics of the artwork (elemental composition, porosity, texture, etc.) and its context (temperature, relative humidity, etc.). Moreover, new protocols must be sustainable and compatible with on-site restoration. A new protocol to test consolidant nanoparticles has been designed and assessed. This is based on easy trials and low-cost techniques—digital microscope, colorimeter, peeling test and ultrasound—that could be employed by restorers in situ. In this paper, different consolidant nanoparticles were tested on stones from two historical quarries. The first treatment was SiO2 nanoparticles, and the second, a new nanocomposite of Ca(OH)2 and ZnO quantum dots that allows us to measure penetration depth easily and discern the treated areas under UV lights. This second treatment was the best option for the studied stones, validating the protocol designed for the choice of consolidants.
Collapse
|