1
|
Song F, Ding X, Wan Y, Zhang T, Yin G, Brown JB, Rao Y. Interface Charge Transfer of Heteroatom Boron Doping Cobalt and Cobalt Nitride for Boosting Water Oxidation. J Phys Chem Lett 2025; 16:3535-3543. [PMID: 40162688 DOI: 10.1021/acs.jpclett.4c03374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Designing high-performance transition-metal electrocatalysts with controlled active heterointerfacial sites for catalyzing the electrochemical oxygen evolution reaction (OER) is very desirable but remains a great challenge. Here, a facile strategy for the synthesis of transition-metal nitride-based interfacial electrocatalysts boron-doped cobalt/cobalt nitride (B-Co/Co2N) is demonstrated with optimal heterointerfaces between Co and Co2N electrocatalysts by introducing boron as a dopant to the former. Benefiting from the unique electronegativity of B, the obtained B-Co/Co2N electrocatalysts show excellent OER performance with overpotential inputs of as low as 262 and 310 mV for 10 and 100 mA cm-2, which are 1.4 and 6.6 times higher than those of Co/Co2N with the same potential input, respectively. The experimental and theoretical results demonstrate the role of the B dopant in inducing charge redistribution of Co active sites in the Co/Co2N interfacial region, which results in a downshift of the Co 3d band center, the optimal oxidation state of active sites for *OOH formation, and lower energy barriers. Furthermore, the assembled electrolyzer can steadily produce an industrial-grade current density of 1000 mA cm-2 at a cell voltage input of only 1.81 V for at least 100 h with a Faradaic efficiency near 100%. This study provides a promising strategy for heteroatom-doped interfacial electrocatalysts with high performance for energy and environmental applications.
Collapse
Affiliation(s)
- Fuzhan Song
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Xiang Ding
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yangyang Wan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tong Zhang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Guogeng Yin
- School of Chemistry and Chemical Engineering, Zhengzhou Normal University, Zhengzhou, Henan 450053, China
| | - Jesse B Brown
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Yi Rao
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
2
|
Wang J, Yang G, Jiao Y, Yan H, Fu H. Subtle 2D/2D MXene-Based Heterostructures for High-Performance Electrocatalytic Water Splitting. SMALL METHODS 2025; 9:e2301602. [PMID: 38385824 DOI: 10.1002/smtd.202301602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/11/2024] [Indexed: 02/23/2024]
Abstract
Developing efficient electrocatalysts is significant for the commercial application of electrocatalytic water splitting. 2D materials have presented great prospects in electrocatalysis for their high surface-to-volume ratio and tunable electronic properties. Particularly, MXene emerges as one of the most promising candidates for electrocatalysts, exhibiting unique advantages of hydrophilicity, outstanding conductivity, and exceptional stability. However, it suffers from lacking catalytic active sites, poor oxidation resistance, and easy stacking, leading to a significant suppression of the catalytic performance. Combining MXene with other 2D materials is an effective way to tackle the aforementioned drawbacks. In this review, the focus is on the accurate synthesis of 2D/2D MXene-based catalysts toward electrocatalytic water splitting. First, the mechanisms of electrocatalytic water splitting and the relative properties and preparation methods of MXenes are introduced to offer the basis for accurate synthesis of 2D/2D MXene-based catalysts. Then, the accurate synthesis methods for various categories of 2D/2D MXene-based catalysts, such as wet-chemical, phase-transformation, electrodeposition, etc., are systematically elaborated. Furthermore, in-depth investigations are conducted into the internal interactions and structure-performance relationship of 2D/2D MXene-based catalysts. Finally, the current challenges and future opportunities are proposed for the development of 2D/2D MXene-based catalysts, aiming to enlighten these promising nanomaterials for electrocatalytic water splitting.
Collapse
Affiliation(s)
- Jiaqi Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Ganceng Yang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Yanqing Jiao
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Haijing Yan
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
3
|
Lakhan MN, Hanan A, Wang Y, Lee HK, Arandiyan H. Integrated MXene and metal oxide electrocatalysts for the oxygen evolution reaction: synthesis, mechanisms, and advances. Chem Sci 2024:d4sc04141k. [PMID: 39268209 PMCID: PMC11388099 DOI: 10.1039/d4sc04141k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Electrochemical water splitting is a promising approach to produce H2 through renewable electricity, but its energy efficiency is severely constrained by the kinetically slow anodic oxygen evolution reaction (OER), which uses about 90% of the electricity in the water-splitting process due to its multistep proton (H+)-coupled electron (e-) transfer process, high overpotential (η), and low energy efficiency. Therefore, the quest for efficient, sustainable, and cost-effective electrocatalysts for hydrogen production through water electrolysis has intensified, highlighting the potential of two-dimensional (2D) MXenes. MXenes have emerged as a promising class of materials characterized by excellent stability, hydrophilicity, and conductivity. However, challenges such as low oxidation resistance, facile stacking, and the absence of intrinsic catalytically active sites limit their performance. This review thoroughly explores various synthesis methods for MXenes and their integration with transition metal oxides (TMOs) to tackle the challenges and enhance catalytic activity. The review also delves into advanced strategies for structural tuning of MXenes and TMOs, such as termination engineering, heteroatom doping, defect engineering, and the formation of heterojunctions. The integration of MXenes with TMOs has addressed the current limitations of MXenes and significantly boosted OER activity. By considering these structural tuning parameters and limitation factors, researchers can gain insights into the design principles and optimization strategies for MXene- and TMO-integrated electrocatalysts. The review concludes with a summary of the key findings and an outlook on future research directions, emphasizing the unexplored potential and innovative approaches that could further advance the field of electrocatalytic water splitting.
Collapse
Affiliation(s)
- Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University Melbourne VIC 3000 Australia
| | - Abdul Hanan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University Selangor 47500 Malaysia
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne Parkville VIC 3010 Australia
| | - Hiang Kwee Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Hamidreza Arandiyan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University Melbourne VIC 3000 Australia
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University Melbourne VIC 3000 Australia
| |
Collapse
|
4
|
Qi J, Zhang Y, Wen J, Zhai H, Li M, Zhang Y, Xu H, Yang W, Li C, Wang H, Peng W, Liu J. Freestanding defective ammonium Vanadate@MXene hybrid films cathode for high performance aqueous zinc ion batteries. J Colloid Interface Sci 2023; 652:285-293. [PMID: 37595445 DOI: 10.1016/j.jcis.2023.08.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
Aqueous zinc ion batteries (AZIBs) have gained extensive attention due to the numerous advantages of zinc, such as low redox potential, high abundance, low cost as well as high theoretical specific capacity. However, the development of AZIBs is still hampered due to the lack of suitable cathodes. In this work, the freestanding defective ammonium vanadate@MXene (d-NVO@MXene) hybrid film was synthesized by simple vacuum filtration strategy. Due to the presence of the hierarchical freestanding structure, outstanding MXene conductive networks and abundant oxygen vacancy (in the d-NVO nanoribbons), the d-NVO@MXene hybrid film can not only expose more active sites but also possess outstanding conductivity and kinetics of charge transfer/ion diffusion. When the d-NVO@MXene hybrid film was directly used as the cathode, it displayed a high specific capacity of 498 mAh/g at 0.5 A/g and superior cycling stability performance with near 100 % coulomb efficiency. Furthermore, the corresponding storage mechanism was elucidated by ex situ various characterizations. This work provides new ideas for the development of freestanding vanadium-based cathode materials for AZIBs.
Collapse
Affiliation(s)
- Junjie Qi
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Yufen Zhang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Jinjin Wen
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Haonan Zhai
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Meng Li
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Yaning Zhang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Huiting Xu
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Wenyue Yang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Chunli Li
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Honghai Wang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jiapeng Liu
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
5
|
Wang P, Wang B, Wang R. Progress in the Synthesis Process and Electrocatalytic Application of MXene Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6816. [PMID: 37895797 PMCID: PMC10608629 DOI: 10.3390/ma16206816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023]
Abstract
With their rich surface chemistry, high electrical conductivity, variable bandgap, and thermal stability, 2D materials have been developed for effective electrochemical energy conversion systems over the past decade. Due to the diversity brought about by the use of transition metals and C/N pairings, the 2D material MXene has found excellent applications in many fields. Among the various applications, many breakthroughs have been made in electrocatalytic applications. Nevertheless, related studies on topics such as the factors affecting the material properties and safer and greener preparation methods have not been reported in detail. Therefore, in this paper, we review the relevant preparation methods of MXene and the safer, more environmentally friendly preparation techniques in detail, and summarize the progress of research on MXene-based materials as highly efficient electrocatalysts in the electrocatalytic field of hydrogen precipitation reaction, nitrogen reduction reaction, oxygen precipitation reaction, oxygen reduction reaction, and carbon dioxide reduction reaction. We also discuss the technology related to MXene materials for hydrogen storage. The main challenges and opportunities for MXene-based materials, which constitute a platform for next-generation electrocatalysis in basic research and practical applications, are highlighted. This paper aims to promote the further development of MXenes and related materials for electrocatalytic applications.
Collapse
Affiliation(s)
- Peng Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Bingquan Wang
- School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rui Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
6
|
Yao L, Pan L, Zhou S, Liu H, Mei H, Li Y, Dassios KG, Colombo P, Cheng L, Zhang L. Wide-temperature-range multispectral camouflage enabled by orientation-gradient co-optimized microwave blackbody metastructure coupled with conformal MXene coating. MATERIALS HORIZONS 2023; 10:3404-3415. [PMID: 37350473 DOI: 10.1039/d3mh00611e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Cloaking against electromagnetic detection is a well-researched topic; yet achieving multispectral camouflage over a wide temperature range remains challenging. Herein, an orientation-gradient co-optimized graded Gyroid-shellular (GGS) SiOC-based metastructure with a conformal MXene coating (M@SiOC) is proposed to achieve wide-temperature-range microwave/infrared/visible-light-compatible camouflage. Firstly, the combination of coordinate transformation and genetic algorithm endows the GGS architecture with optimal orientation and gradient, allowing superior microwave blackbody-like behavior. Secondly, a microwave-transparent, low-infrared-emissivity MXene metasurface is constructed in situ to permit wide-temperature-range infrared camouflage. Finally, the outstanding spectral selectivity of MXene enables camouflage against 1.06 μm-lidar and visible-light detection. As a result, the as-fabricated [110]-oriented GGS M@SiOC metamaterials exhibit outstanding wide-temperature-range multispectral camouflage: (i) ultrabroadband microwave absorption exceeding 80% in the X-Ku band from room temperature (RT) to 500 °C with absorption above 86.0% (91.4% on average) at 500 °C; (ii) excellent long-wavelength infrared camouflage for object temperatures from RT to 450 °C, reaching an infrared signal intensity of 78.5% for objects at 450 °C; and (iii) camouflage against both 1.06 μm-lidar and dark environment. Compared with traditional hierarchical metamaterials necessitating complex micro/nano-fabrication processes, this work provides a novel pathway toward the realization of structurally integrated multispectral stealth components by combining flexible metastructure design and high-fidelity additive manufacturing.
Collapse
Affiliation(s)
- Li Yao
- Science and technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an Shaanxi 710072, P. R. China.
| | - Longkai Pan
- Science and technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an Shaanxi 710072, P. R. China.
| | - Shixiang Zhou
- Science and technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an Shaanxi 710072, P. R. China.
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Hongxia Liu
- Science and technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an Shaanxi 710072, P. R. China.
| | - Hui Mei
- Science and technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an Shaanxi 710072, P. R. China.
| | - Yang Li
- National Key Laboratory of Science and Technology on High-strength Structural Materials, Central South University, Changsha 410083, China
| | - Konstantinos G Dassios
- Department of Chemical Engineering, University of Patras, Karatheodory 1, Patras 26504, Greece
| | - Paolo Colombo
- Department of Industrial Engineering, University of Padova, Padova 35131, Italy
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Laifei Cheng
- Science and technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an Shaanxi 710072, P. R. China.
| | - Litong Zhang
- Science and technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an Shaanxi 710072, P. R. China.
| |
Collapse
|
7
|
Dell’Oro R, Sansotera M, Bianchi CL, Magagnin L. Efficient BiVO 4-Based Photoanode with Chemically Precipitated Hierarchical Cobalt Borate (Co-B i) Oxygen Evolution Reaction Catalysts. ACS OMEGA 2023; 8:20332-20341. [PMID: 37323379 PMCID: PMC10268265 DOI: 10.1021/acsomega.3c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
The integration of cobalt borate OER catalysts with electrodeposited BiVO4-based photoanodes through a simple drop casting technique was shown to provide an improvement of the photoelectrochemical performance of electrodes under simulated solar light. Catalysts were obtained by chemical precipitation mediated by NaBH4 at room temperature. Scanning electron microscopy (SEM) investigation of precipitates showed a hierarchical structure with globular features covered in nanometric thin sheets providing a large active area, whereas X-ray diffraction (XRD) and Raman spectroscopy highlighted their amorphous structure. The photoelectrochemical behavior of samples was investigated by linear scan voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) techniques. The amount of particles loaded onto BiVO4 absorbers was optimized by variation of the drop cast volume. The enhancement of photocurrent generation by Co-Bi-decorated electrodes with respect to bare BiVO4 was observed with an increase from 1.83 to 3.65 mA/cm2 at 1.23 V vs RHE under AM 1.5 simulated solar light, corresponding to a charge transfer efficiency of 84.6%. The calculated maximum applied bias photon-to-current efficiency (ABPE) value for optimized samples was 1.5% at 0.5 V applied bias. Under constant illumination at 1.23 V vs RHE, a depletion of photoanode performances was observed within an hour, likely due to the detachment of the catalyst from the electrode surface.
Collapse
Affiliation(s)
- Ruben Dell’Oro
- Department
of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, 20131 Milano, Italy
| | - Maurizio Sansotera
- Department
of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, 20131 Milano, Italy
| | - Claudia L. Bianchi
- Department
of Chemistry, Università degli Studi
di Milano, 20133 Milano, Italy
| | - Luca Magagnin
- Department
of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, 20131 Milano, Italy
| |
Collapse
|
8
|
Chaturvedi K, Hada V, Paul S, Sarma B, Malvi D, Dhangar M, Bajpai H, Singhwane A, Srivastava AK, Verma S. The Rise of MXene: A Wonder 2D Material, from Its Synthesis and Properties to Its Versatile Applications-A Comprehensive Review. Top Curr Chem (Cham) 2023; 381:11. [PMID: 36907974 DOI: 10.1007/s41061-023-00420-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 01/13/2023] [Indexed: 03/14/2023]
Abstract
MXene, a new member of 2D material, unites the eminence of hydrophilicity, large surface groups, superb flexibility and excellent conductivity. Because of its prodigious characteristics, MXene has gained much approbation among researchers worldwide. MXene's noteworthy features, such as its electrical conductivity, structural property, magnetic behaviour, etc., manifest a broad spectrum of applications, including environment, catalytic, wireless communications, electromagnetic interference (EMI) shielding, drug delivery, wound dressing, bio-imaging, antimicrobial and biosensor. In this review article, an overview of the latest advancements in the applications of MXene has been reported. First, various synthesis strategies of MXene will be summarized, followed by the different structural, physical and chemical properties. The current advances in versatile applications have been discussed. The article aims to incorporate all the possible applications of MXene, making it a versatile material that juxtaposes it with other 2D materials. A separate section is dedicated to the bottlenecks for future developments and recommendations.
Collapse
Affiliation(s)
- Kamna Chaturvedi
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India.,AcSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh, 462026, India
| | - Vaishnavi Hada
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India
| | - Sriparna Paul
- AcSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh, 462026, India
| | - Bibek Sarma
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India
| | - Deeksha Malvi
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India
| | - Manish Dhangar
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India
| | - Harsh Bajpai
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India
| | - Anju Singhwane
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India
| | - Avanish Kumar Srivastava
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India
| | - Sarika Verma
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India. .,AcSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh, 462026, India.
| |
Collapse
|
9
|
Shuai TY, Zhan QN, Xu HM, Huang CJ, Zhang ZJ, Li GR. Recent advances in the synthesis and electrocatalytic application of MXene materials. Chem Commun (Camb) 2023; 59:3968-3999. [PMID: 36883557 DOI: 10.1039/d2cc06418a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
MXenes are a class of two-dimensional materials with a graphene-like structure, which have excellent optical, biological, thermodynamic, electrical and magnetic properties. Due to the diversity resulting from the combination of transition metals and C/N, the MXene family has expanded to more than 30 members and been applied in many fields with broad application prospects. Among their applications, electrocatalytic applications have achieved many breakthroughs. Therefore, in this review, we summarize the reports on the preparation of MXenes and their application in electrocatalysis published in the last five years and describe the two main methods for the preparation of MXenes, i.e., bottom-up and top to bottom synthesis. Different methods may change the structure or surface termination of MXenes, and accordingly affect their electrocatalytic performance. Furthermore, we highlight the application of MXenes in the electrocatalytic hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), nitrogen reduction reaction (NRR), and multi-functionalization. It can be concluded that the electrocatalytic properties of MXenes can be modified by changing the type of functional groups or doping. Also, MXenes can be compounded with other materials to produce electronic coupling and improve the catalytic activity and stability of the resulting composites. In addition, Mo2C and Ti3C2 are two types of MXene materials that have been widely studied in the field of electrocatalysis. At present, research on the synthesis of MXenes is focused on carbides, whereas research on nitrides is rare, and there are no synthesis methods meeting the requirements of green, safety, high efficiency and industrialization simultaneously. Therefore, it is very important to explore environmentally friendly industrial production routes and devote more research efforts to the synthesis of MXene nitrides.
Collapse
Affiliation(s)
- Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
10
|
Towards high-performance electrocatalysts: Activity optimization strategy of 2D MXenes-based nanomaterials for water-splitting. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Xiao S, Zheng Y, Wu X, Zhou M, Rong X, Wang L, Tang Y, Liu X, Qiu L, Cheng C. Tunable Structured MXenes With Modulated Atomic Environments: A Powerful New Platform for Electrocatalytic Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203281. [PMID: 35989101 DOI: 10.1002/smll.202203281] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Owing to their rich surface chemistry, high conductivity, tunable bandgap, and thermal stability, structured 2D transition-metal carbides, nitrides, and carbonitrides (MXenes) with modulated atomic environments have emerged as efficient electrochemical energy conversion systems in the past decade. Herein, the most recent advances in the engineering of tunable structured MXenes as a powerful new platform for electrocatalytic energy conversion are comprehensively summarized. First, the state-of-the-art synthetic and processing methods, tunable nanostructures, electronic properties, and modulation principles of engineering MXene-derived nanoarchitectures are focused on. The current breakthroughs in the design of catalytic centers, atomic environments, and the corresponding structure-performance correlations, including termination engineering, heteroatom doping, defect engineering, heterojunctions, and alloying, are discussed. Furthermore, representative electrocatalytic applications of structured MXenes in energy conversion systems are also summarized. Finally, the challenges in and prospects for constructing MXene-based electrocatalytic materials are also discussed. This review provides a leading-edge understanding of the engineering of various MXene-based electrocatalysts and offers theoretical and experimental guidance for prospective studies, thereby promoting the practical applications of tunable structured MXenes in electrocatalytic energy conversion systems.
Collapse
Affiliation(s)
- Sutong Xiao
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yijuan Zheng
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiao Rong
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Liyun Wang
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yuanjiao Tang
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Xikui Liu
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Li Qiu
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
12
|
Zahra SA, Hakim MW, Mansoor MA, Rizwan S. Two-dimensional double transition metal carbides as superior bifunctional electrocatalysts for overall water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Zhou G, Gao X, Wen S, Wu X, Zhang L, Wang T, Zhao P, Yin J, Zhu W. Magnesium-regulated oxygen vacancies of cobalt-nickel layered double hydroxide nanosheets for ultrahigh performance asymmetric supercapacitors. J Colloid Interface Sci 2022; 612:772-781. [PMID: 35032928 DOI: 10.1016/j.jcis.2021.12.087] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/22/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
Rational design of layered double hydroxide (LDH) electrodes is of great significance for high-performance supercapacitors (SCs). Herein, ultrathin cobalt-nickel-magnesium layered double hydroxide (CoNiMg-LDH) nanosheets with plentiful oxygen vacancies are synthesized via sacrificial magnesium-based replacement reaction at room temperature. Self-doping and mild reduction of magnesium can significantly increase the concentration of oxygen vacancies in CoNiMg-LDH, which promotes the electrochemical charge transfer efficiency and enhances the adsorption ability of electrolytes. Density functional theory (DFT) calculations also indicate that Mg2+ doping can decrease the formation energy of oxygen vacancies in CoNiMg-LDH nanosheets, which increases the concentration of oxygen vacancies. Thus, the assembled asymmetric supercapacitor CoNiMg-LDH//Actived Carbon accomplishes a superior capacity of ∼ 333 C g-1 (208 F g-1) at 1 A g-1 and presents a gravimetric energy density of 73.9 Wh kg-1 at 0.8 kW kg-1. It presents only 13% capacity loss at 20 A g-1 after 5000 cycles. This discovery emphasizes the positive role of magnesium in regulating oxygen vacancies to improve the performance of supercapacitors, which should be beneficial for extending the scope of superior SCs active materials.
Collapse
Affiliation(s)
- Guolang Zhou
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, Jiangsu 223001, PR China; School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaoliang Gao
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, Jiangsu 223001, PR China
| | - Shizheng Wen
- School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huai'an, Jiangsu 223001, PR China
| | - Xinglong Wu
- School of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Lili Zhang
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, Jiangsu 223001, PR China.
| | - Tianshi Wang
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, Jiangsu 223001, PR China
| | - Pusu Zhao
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, Jiangsu 223001, PR China
| | - Jingzhou Yin
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, Jiangsu 223001, PR China.
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
14
|
Najam T, Shah SSA, Peng L, Javed MS, Imran M, Zhao MQ, Tsiakaras P. Synthesis and nano-engineering of MXenes for energy conversion and storage applications: Recent advances and perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214339] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Zahra SA, Rizwan S. MWCNT-modified MXene as cost-effective efficient bifunctional catalyst for overall water splitting. RSC Adv 2022; 12:8405-8413. [PMID: 35424786 PMCID: PMC8984944 DOI: 10.1039/d2ra00868h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Utilization of cost-effective, bifunctional, and efficient electrocatalysts for complete water splitting is desirable for sustainable clean hydrogen energy.
Collapse
Affiliation(s)
- Syedah Afsheen Zahra
- Physics Characterization and Simulations Lab (PCSL), Department of Physics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Syed Rizwan
- Physics Characterization and Simulations Lab (PCSL), Department of Physics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| |
Collapse
|
16
|
Qiao J, Kong L, Xu S, Lin K, He W, Ni M, Ruan Q, Zhang P, Liu Y, Zhang W, Pan L, Sun Z. Research progress of MXene-based catalysts for electrochemical water-splitting and metal-air batteries. ENERGY STORAGE MATERIALS 2021; 43:509-530. [DOI: 10.1016/j.ensm.2021.09.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
|
17
|
Guan B, Sun X, Zhang Y, Wu X, Qiu Y, Wang M, Fan L, Zhang N. The discovery of interfacial electronic interaction within cobalt boride@MXene for high performance lithium-sulfur batteries. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Hoang Huy VP, Ahn YN, Hur J. Recent Advances in Transition Metal Dichalcogenide Cathode Materials for Aqueous Rechargeable Multivalent Metal-Ion Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1517. [PMID: 34201136 PMCID: PMC8229149 DOI: 10.3390/nano11061517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 11/19/2022]
Abstract
The generation of renewable energy is a promising solution to counter the rapid increase in energy consumption. Nevertheless, the availability of renewable resources (e.g., wind, solar, and tidal) is non-continuous and temporary in nature, posing new demands for the production of next-generation large-scale energy storage devices. Because of their low cost, highly abundant raw materials, high safety, and environmental friendliness, aqueous rechargeable multivalent metal-ion batteries (AMMIBs) have recently garnered immense attention. However, several challenges hamper the development of AMMIBs, including their narrow electrochemical stability, poor ion diffusion kinetics, and electrode instability. Transition metal dichalcogenides (TMDs) have been extensively investigated for applications in energy storage devices because of their distinct chemical and physical properties. The wide interlayer distance of layered TMDs is an appealing property for ion diffusion and intercalation. This review focuses on the most recent advances in TMDs as cathode materials for aqueous rechargeable batteries based on multivalent charge carriers (Zn2+, Mg2+, and Al3+). Through this review, the key aspects of TMD materials for high-performance AMMIBs are highlighted. Furthermore, additional suggestions and strategies for the development of improved TMDs are discussed to inspire new research directions.
Collapse
Affiliation(s)
| | | | - Jaehyun Hur
- Department of Chemical and Biological Engineering, Gachon University, Seongnam 13120, Gyeonggi, Korea; (V.P.H.H.); (Y.N.A.)
| |
Collapse
|
19
|
Liu W, Zheng D, Deng T, Chen Q, Zhu C, Pei C, Li H, Wu F, Shi W, Yang S, Zhu Y, Cao X. Boosting Electrocatalytic Activity of 3d‐Block Metal (Hydro)oxides by Ligand‐Induced Conversion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wenxian Liu
- College of Materials Science and Engineering State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology Center for Electron Microscopy Center for Membrane Separation and Water Science & Technology College of Chemical Engineering Zhejiang University of Technology 18 Chaowang Road Hangzhou Zhejiang 310014 P. R. China
| | - Dong Zheng
- College of Materials Science and Engineering State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology Center for Electron Microscopy Center for Membrane Separation and Water Science & Technology College of Chemical Engineering Zhejiang University of Technology 18 Chaowang Road Hangzhou Zhejiang 310014 P. R. China
| | - Tianqi Deng
- Institute of High Performance Computing Agency for Science, Technology and Research 1 Fusionopolis Way, #16-16 Connexis Singapore 138632 Singapore
| | - Qiaoli Chen
- College of Materials Science and Engineering State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology Center for Electron Microscopy Center for Membrane Separation and Water Science & Technology College of Chemical Engineering Zhejiang University of Technology 18 Chaowang Road Hangzhou Zhejiang 310014 P. R. China
| | - Chongzhi Zhu
- College of Materials Science and Engineering State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology Center for Electron Microscopy Center for Membrane Separation and Water Science & Technology College of Chemical Engineering Zhejiang University of Technology 18 Chaowang Road Hangzhou Zhejiang 310014 P. R. China
| | - Chengjie Pei
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 P. R. China
| | - Hai Li
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 P. R. China
| | - Fangfang Wu
- College of Materials Science and Engineering State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology Center for Electron Microscopy Center for Membrane Separation and Water Science & Technology College of Chemical Engineering Zhejiang University of Technology 18 Chaowang Road Hangzhou Zhejiang 310014 P. R. China
| | - Wenhui Shi
- College of Materials Science and Engineering State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology Center for Electron Microscopy Center for Membrane Separation and Water Science & Technology College of Chemical Engineering Zhejiang University of Technology 18 Chaowang Road Hangzhou Zhejiang 310014 P. R. China
| | - Shuo‐Wang Yang
- Institute of High Performance Computing Agency for Science, Technology and Research 1 Fusionopolis Way, #16-16 Connexis Singapore 138632 Singapore
| | - Yihan Zhu
- College of Materials Science and Engineering State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology Center for Electron Microscopy Center for Membrane Separation and Water Science & Technology College of Chemical Engineering Zhejiang University of Technology 18 Chaowang Road Hangzhou Zhejiang 310014 P. R. China
| | - Xiehong Cao
- College of Materials Science and Engineering State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology Center for Electron Microscopy Center for Membrane Separation and Water Science & Technology College of Chemical Engineering Zhejiang University of Technology 18 Chaowang Road Hangzhou Zhejiang 310014 P. R. China
| |
Collapse
|
20
|
Recent advances in MXene-based nanoarchitectures as electrode materials for future energy generation and conversion applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213806] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Chen Q, Zhang Q, Liu H, Liang J, Peng W, Li Y, Zhang F, Fan X. Preparation of Hollow Cobalt-Iron Phosphides Nanospheres by Controllable Atom Migration for Enhanced Water Oxidation and Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007858. [PMID: 33690975 DOI: 10.1002/smll.202007858] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Transition metal phosphides (TMPs), especially the dual-metal TMPs, are highly active non-precious metal oxygen evolution reaction (OER) electrocatalysts. Herein, an interesting atom migration phenomenon induced by Kirkendall effect is reported for the preparation of cobalt-iron (Co-Fe) phosphides by the direct phosphorization of Co-Fe alloys. The compositions and distributions of the Co and Fe phosphides phases on the surfaces of the electrocatalysts can be readily controlled by Cox Fey alloys precursors and the phosphorization process with interesting atom migration phenomenon. The optimized Co7 Fe3 phosphides exhibit a low overpotential of 225 mV at 10 mA cm-2 in 1 m KOH alkaline media, with a small Tafel slope of 37.88 mV dec-1 and excellent durability. It only requires a voltage of 1.56 V to drive the current density of 10 mA cm-2 when used as both anode and cathode for overall water splitting. This work opens a new strategy to controllable preparation of dual-metal TMPs with designed phosphides active sites for enhanced OER and overall water splitting.
Collapse
Affiliation(s)
- Qiming Chen
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Qicheng Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Huibin Liu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Junmei Liang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
22
|
Liu W, Zheng D, Deng T, Chen Q, Zhu C, Pei C, Li H, Wu F, Shi W, Yang S, Zhu Y, Cao X. Boosting Electrocatalytic Activity of 3d‐Block Metal (Hydro)oxides by Ligand‐Induced Conversion. Angew Chem Int Ed Engl 2021; 60:10614-10619. [DOI: 10.1002/anie.202100371] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/10/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Wenxian Liu
- College of Materials Science and Engineering State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology Center for Electron Microscopy Center for Membrane Separation and Water Science & Technology College of Chemical Engineering Zhejiang University of Technology 18 Chaowang Road Hangzhou Zhejiang 310014 P. R. China
| | - Dong Zheng
- College of Materials Science and Engineering State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology Center for Electron Microscopy Center for Membrane Separation and Water Science & Technology College of Chemical Engineering Zhejiang University of Technology 18 Chaowang Road Hangzhou Zhejiang 310014 P. R. China
| | - Tianqi Deng
- Institute of High Performance Computing Agency for Science, Technology and Research 1 Fusionopolis Way, #16-16 Connexis Singapore 138632 Singapore
| | - Qiaoli Chen
- College of Materials Science and Engineering State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology Center for Electron Microscopy Center for Membrane Separation and Water Science & Technology College of Chemical Engineering Zhejiang University of Technology 18 Chaowang Road Hangzhou Zhejiang 310014 P. R. China
| | - Chongzhi Zhu
- College of Materials Science and Engineering State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology Center for Electron Microscopy Center for Membrane Separation and Water Science & Technology College of Chemical Engineering Zhejiang University of Technology 18 Chaowang Road Hangzhou Zhejiang 310014 P. R. China
| | - Chengjie Pei
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 P. R. China
| | - Hai Li
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 P. R. China
| | - Fangfang Wu
- College of Materials Science and Engineering State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology Center for Electron Microscopy Center for Membrane Separation and Water Science & Technology College of Chemical Engineering Zhejiang University of Technology 18 Chaowang Road Hangzhou Zhejiang 310014 P. R. China
| | - Wenhui Shi
- College of Materials Science and Engineering State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology Center for Electron Microscopy Center for Membrane Separation and Water Science & Technology College of Chemical Engineering Zhejiang University of Technology 18 Chaowang Road Hangzhou Zhejiang 310014 P. R. China
| | - Shuo‐Wang Yang
- Institute of High Performance Computing Agency for Science, Technology and Research 1 Fusionopolis Way, #16-16 Connexis Singapore 138632 Singapore
| | - Yihan Zhu
- College of Materials Science and Engineering State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology Center for Electron Microscopy Center for Membrane Separation and Water Science & Technology College of Chemical Engineering Zhejiang University of Technology 18 Chaowang Road Hangzhou Zhejiang 310014 P. R. China
| | - Xiehong Cao
- College of Materials Science and Engineering State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology Center for Electron Microscopy Center for Membrane Separation and Water Science & Technology College of Chemical Engineering Zhejiang University of Technology 18 Chaowang Road Hangzhou Zhejiang 310014 P. R. China
| |
Collapse
|
23
|
Si H, Han C, Cui Y, Sang S, Liu K, Liu H, Wu Q. Hydrophilic NiFe-LDH/Ti3C2Tx/NF electrode for assisting efficiently oxygen evolution reaction. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Lim KRG, Handoko AD, Nemani SK, Wyatt B, Jiang HY, Tang J, Anasori B, Seh ZW. Rational Design of Two-Dimensional Transition Metal Carbide/Nitride (MXene) Hybrids and Nanocomposites for Catalytic Energy Storage and Conversion. ACS NANO 2020; 14:10834-10864. [PMID: 32790329 DOI: 10.1021/acsnano.0c05482] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electro-, photo-, and photoelectrocatalysis play a critical role toward the realization of a sustainable energy economy. They facilitate numerous redox reactions in energy storage and conversion systems, enabling the production of chemical feedstock and clean fuels from abundant resources like water, carbon dioxide, and nitrogen. One major obstacle for their large-scale implementation is the scarcity of cost-effective, durable, and efficient catalysts. A family of two-dimensional transition metal carbides, nitrides, and carbonitrides (MXenes) has recently emerged as promising earth-abundant candidates for large-area catalytic energy storage and conversion due to their unique properties of hydrophilicity, high metallic conductivity, and ease of production by solution processing. To take full advantage of these desirable properties, MXenes have been combined with other materials to form MXene hybrids with significantly enhanced catalytic performances beyond the sum of their individual components. MXene hybridization tunes the electronic structure toward optimal binding of redox active species to improve intrinsic activity while increasing the density and accessibility of active sites. This review outlines recent strategies in the design of MXene hybrids for industrially relevant electrocatalytic, photocatalytic, and photoelectrocatalytic applications such as water splitting, metal-air/sulfur batteries, carbon dioxide reduction, and nitrogen reduction. By clarifying the roles of individual material components in the MXene hybrids, we provide design strategies to synergistically couple MXenes with associated materials for highly efficient and durable catalytic applications. We conclude by highlighting key gaps in the current understanding of MXene hybrids to guide future MXene hybrid designs in catalytic energy storage and conversion applications.
Collapse
Affiliation(s)
- Kang Rui Garrick Lim
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Albertus D Handoko
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Srinivasa Kartik Nemani
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Brian Wyatt
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Hai-Ying Jiang
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Babak Anasori
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| |
Collapse
|
25
|
Cui L, Zhang W, Zheng R, Liu J. Electrocatalysts Based on Transition Metal Borides and Borates for the Oxygen Evolution Reaction. Chemistry 2020; 26:11661-11672. [DOI: 10.1002/chem.202000880] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/14/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Liang Cui
- College of Materials Science and Engineering Linyi University Linyi 276400 Shandong P. R. China
| | - Wenxiu Zhang
- College of Materials Science and Engineering Institute for Graphene Applied Technology Innovation Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province Qingdao University Qingdao 266071 P. R. China
| | - Rongkun Zheng
- College of Materials Science and Engineering Linyi University Linyi 276400 Shandong P. R. China
| | - Jingquan Liu
- College of Materials Science and Engineering Linyi University Linyi 276400 Shandong P. R. China
- College of Materials Science and Engineering Institute for Graphene Applied Technology Innovation Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province Qingdao University Qingdao 266071 P. R. China
| |
Collapse
|
26
|
Elakkiya R, Maduraiveeran G. Two-Dimensional Earth-Abundant Transition Metal Oxides Nanomaterials: Synthesis and Application in Electrochemical Oxygen Evolution Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4728-4736. [PMID: 32275444 DOI: 10.1021/acs.langmuir.0c00714] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Development of a universal synthetic strategy for two-dimensional (2D) Earth-abundant transition metal oxides nanomaterials is highly vital toward numerous electrochemical applications. Herein, a facile and general synthesis of highly ordered two-dimensional metal oxides nanomaterials includes Co3O4, NiO, CuO, and Fe3O4 nanosheets as an electrocatalyst for oxygen evolution reaction (OER) is demonstrated. Among the synthesized 2D transition metal oxides, the Co3O4 nanosheet exhibits smallest overpotential (η) of ∼384.0 mV at a current density of 10.0 mA cm-2 and Tafel slope of ∼52.0 mV dec-1, highest mass activity of ∼112.3 A g-1 at the overpotential of ∼384.0 mV, and high turn over frequency (TOF) of 0.099 s-1, which is relatively favorable with state-of-the-art RuO2 catalyst. The present synthetic approach may unlock a brand new pathway to prepare shape-controlled Earth-abundant transition metal oxides nanomaterials for electrocatalytic OER.
Collapse
Affiliation(s)
- Rajasekaran Elakkiya
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| |
Collapse
|
27
|
Ma B, Duan X, Han W, Fan X, Li Y, Zhang F, Zhang G, Peng W. Decorated nickel phosphide nanoparticles with nitrogen and phosphorus co-doped porous carbon for enhanced electrochemical water splitting. J Colloid Interface Sci 2020; 567:393-401. [PMID: 32070884 DOI: 10.1016/j.jcis.2020.02.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
Abstract
A novel free-standing electrode consisting of nickel phosphide (Ni2P) nanoparticles on nitrogen and phosphorus co-doped porous carbon (NPC) are synthesized on carbon cloth (CC). Polyaniline (PANI) and nickel (Ni) are sequentially electro-deposited on the surface of CC, which are then transformed into NPC and Ni2P by an in-situ carbonization-phosphorization combined process. The electrode surface is distributed with large amounts of uniform macropores, which could expose more active sites and enhance the interfacial exchange with the electrolyte. The Ni2P@NPC@CC electrode delivers early overpotentials of 92 and 280 mV vs. Reversible Hydrogen Electrode (RHE) at 10 mA cm-2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline condition, respectively. The electrolytic cell with Ni2P@NPC@CC electrode both as anode and cathode can achieve 10 mA cm-2 at a small bias of 1.54 V for the overall water splitting. Density functional theory (DFT) calculation indicates that combination with Ni2P and NPC can decrease Gibbs free energy for H* adsorption (ΔGH*) and increase charge density on the interface, thus could lead to the enhanced activity for water splitting. The free-standing and noble-metal free Ni2P@NPC@CC electrode is stable, highly active and cost effective, thus have great potential for the hydrogen production.
Collapse
Affiliation(s)
- Biao Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Weiwei Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, China
| | - Guoliang Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, China.
| |
Collapse
|
28
|
Zhang M, Chen X, Sui J, Abraha BS, Li Y, Peng W, Zhang G, Zhang F, Fan X. Improving the performance of a titanium carbide MXene in supercapacitors by partial oxidation treatment. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01588d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a new strategy to controllably oxidize Ti3C2Tx by readily adjusting the loading of ammonium persulfate, in order to turn the –F terminal groups to –O terminal groups on the Ti3C2Tx MXene, contributing to high performance.
Collapse
Affiliation(s)
- Miao Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xifan Chen
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jinyi Sui
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | | | - Yang Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Wenchao Peng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - GuoLiang Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
29
|
Ramadoss M, Chen Y, Hu Y, Yang D. Three-dimensional porous nanoarchitecture constructed by ultrathin NiCoBOx nanosheets as a highly efficient and durable electrocatalyst for oxygen evolution reaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134666] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Zhan C, Sun W, Xie Y, Jiang DE, Kent PRC. Computational Discovery and Design of MXenes for Energy Applications: Status, Successes, and Opportunities. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24885-24905. [PMID: 31082189 DOI: 10.1021/acsami.9b00439] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
MXenes (Mn+1Xn, e.g., Ti3C2) are the largest 2D material family developed in recent years. They exhibit significant potential in the energy sciences, particularly for energy storage. In this review, we summarize the progress of the computational work regarding the theoretical design of new MXene structures and predictions for energy applications including their fundamental, energy storage, and catalytic properties. We also outline how high-throughput computation, big data, and machine-learning techniques can help broaden the MXene family. Finally, we present some of the major remaining challenges and future research directions needed to mature this novel materials family.
Collapse
Affiliation(s)
- Cheng Zhan
- Department of Chemistry , University of California , Riverside , California 92521 , United States
- Quantum Simulation Group , Lawrence Livermore National Laboratory , Livermore , California 94551 , United States
| | | | | | - De-En Jiang
- Department of Chemistry , University of California , Riverside , California 92521 , United States
| | | |
Collapse
|
31
|
Wang Y, Zhou Y, Han M, Xi Y, You H, Hao X, Li Z, Zhou J, Song D, Wang D, Gao F. Environmentally-Friendly Exfoliate and Active Site Self-Assembly: Thin 2D/2D Heterostructure Amorphous Nickel-Iron Alloy on 2D Materials for Efficient Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805435. [PMID: 30941892 DOI: 10.1002/smll.201805435] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/22/2019] [Indexed: 05/26/2023]
Abstract
A class of 2D layered materials exhibits substantial potential for high-performance electrocatalysts due to high specific surface area, tunable electronic properties, and open 2D channels for fast ion transport. However, liquid-phase exfoliation always utilizes organic solvents that are harmful to the environment, and the active sites are limited to edge sites. Here, an environmentally friendly exfoliator in aqueous solution is presented without utilizing any toxic or hazardous substance and active site self-assembly on the inert base of 2D materials. Benefiting from thin 2D/2D heterostructure and strong interfacial coupling, the resultant highly disordered amorphous NiFe/2D materials (Ti3C2 MXene, graphene and MoS2 ) thin nanosheets exhibit extraordinary electrocatalytic performance toward oxygen evolution reaction (OER) in alkaline media. DFT results further verify the experimental results. The study emphasizes a viable idea to probe efficient electrocatalysts by means of the synergistic effect of environmentally friendly exfoliator in aqueous solution and active site self-assembly on the inert base of 2D materials which forms the unique thin 2D/2D heterostructure in-suit. This new type of heterostructure opens up a novel avenue for the rational design of highly efficient 2D materials for electrocatalysis.
Collapse
Affiliation(s)
- Yuanzhe Wang
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Yanyan Zhou
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Minze Han
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Yaokai Xi
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Huanhuan You
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Xianfeng Hao
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Zhiping Li
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Junshuang Zhou
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Dandan Song
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Dong Wang
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Faming Gao
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| |
Collapse
|