1
|
Choi J, Thirupathi A, Kim J, Ha HJ, Ahn KH, Kang EJ. Fe(II)-Iminopyridine Catalyst for the Regioselective Synthesis of Oxazolidinones Using Carbon Dioxide. J Org Chem 2024; 89:18081-18089. [PMID: 39630108 DOI: 10.1021/acs.joc.4c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
This study presents the application of a novel Fe-iminopyridine catalyst for the regioselective synthesis of oxazolidinones from carbon dioxide and aziridines. Our findings demonstrate that the Fe-iminopyridine catalyst containing imidazole functional group offers promising efficiency and facilitates a sustainable approach to green chemical synthesis at 50 °C and 10 bar CO2 pressure in a single-component Fe catalyst system. Various aziridines with carboxylic acid-derived substituents were transformed into 5-carbonyl substituted oxazolidinone products. The regioselective synthesis of oxazolidinones followed by the reduction enhances their utility for the pharmaceutically valuable compounds.
Collapse
Affiliation(s)
- Junhyeon Choi
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Annaram Thirupathi
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Jihoon Kim
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Hyun-Joon Ha
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin 17035, Korea
| | - Kwang-Hyun Ahn
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Eun Joo Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
2
|
Zhou YB, Chen F, Du ZH, Liu BY, Liu N. Iron(III) Complexes with Pyridine Group Coordination and Dissociation Reversible Equilibrium: Cooperative Activation of CO 2 and Epoxides into Cyclic Carbonates. Inorg Chem 2024; 63:16491-16506. [PMID: 39163141 DOI: 10.1021/acs.inorgchem.4c02452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Herein, a series of [ONSN]-type iron(III) complexes were synthesized. A binary catalytic system in combination with iron complexes and tetrabutylammonium bromide (TBAB) exhibited high activity for the synthesis of cyclic carbonates from CO2 (1 atm) and terminal epoxides at room temperature. Additionally, single-component iron complexes without using additional TBAB as nucleophiles also showed high activity for the cycloaddition of CO2 and terminal epoxides under 80 °C and 0.5 MPa of CO2. This study demonstrates that single-component iron catalysts provide a competitive alternative to binary catalytic systems for the synthesis of cyclic carbonates from CO2 and epoxides. Mechanistic studies on a single-component iron catalytic system suggest that the temperature serves as a role of responsive switch for controlling the coordination and dissociation of pyridine bearing iron catalysts detected using in situ infrared spectroscopy, and uncoordinated pyridine activates CO2 to form carbamate. Studies of electrospray ionization high-resolution mass spectrometry reveal that an iron center was used as a Lewis acidic site, free halogen anions from the iron center were used as a nucleophilic site, and coordinated pyridine was released from iron complexes to activate CO2.
Collapse
Affiliation(s)
- Yong-Bo Zhou
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, North Fourth Road, Shihezi 832003, China
| | - Fei Chen
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, North Fourth Road, Shihezi 832003, China
| | - Zhi-Hong Du
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, North Fourth Road, Shihezi 832003, China
| | - Bin-Yuan Liu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ning Liu
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, North Fourth Road, Shihezi 832003, China
| |
Collapse
|
3
|
Manganese(III) complexes with tetradentate O^C^C^O ligands: Synthesis, characterization and catalytic studies on the CO2 cycloaddition with epoxides. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
4
|
Liu G, Fu Z, Chen F, Xu C, Li M, Liu N. N-Heterocyclic Carbene-Pyridine Manganese Complex/ Tetrabutylammonium Iodide Catalyzed Synthesis of Cyclic Carbonate from CO 2 and Epoxide. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
5
|
Abd El Salam HA, Moustafa G, Zayed EM, Mohamed GG. Isophthaloylbis (Azanediyl) Dipeptide Ligand and Its Complexes: Structural Study, Spectroscopic, Molecular Orbital, Molecular Docking, and Biological Activity Properties. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2097712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
| | - Gaber Moustafa
- Peptides Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Ehab M. Zayed
- Green Chemistry Department, National, Research Centre, Dokki, Giza, Egypt
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
- Nanoscience Department, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, Alexandria, Egypt
| |
Collapse
|
6
|
Li W, Qi K, Lu X, Qi Y, Zhang J, Zhang B, Qi W. Electrochemically Assisted Cycloaddition of Carbon Dioxide to Styrene Oxide on Copper/Carbon Hybrid Electrodes: Active Species and Reaction Mechanism. Chemistry 2022; 28:e202200622. [DOI: 10.1002/chem.202200622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Wenze Li
- College of Science Shenyang University of Chemical Technology Shenyang Liaoning 110142 P. R. China
| | - Ke Qi
- College of Science Shenyang University of Chemical Technology Shenyang Liaoning 110142 P. R. China
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 (P. R. China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 P. R. China
| | - Xingyu Lu
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 (P. R. China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 P. R. China
| | - Yujie Qi
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 (P. R. China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 P. R. China
| | - Jialong Zhang
- College of Science Shenyang University of Chemical Technology Shenyang Liaoning 110142 P. R. China
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 (P. R. China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 P. R. China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 (P. R. China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 P. R. China
| | - Wei Qi
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 (P. R. China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 P. R. China
| |
Collapse
|
7
|
Della Monica F, Capacchione C. Recent Advancements in Metal‐Catalysts Design for CO2/Epoxide Reactions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Francesco Della Monica
- Università degli Studi dell'Insubria: Universita degli Studi dell'Insubria Dipartimento di Biotecnologie e Scienze della Vita ITALY
| | - Carmine Capacchione
- Università degli Studi di Salerno Dipartimento di Chimica e Biologia "Adolfo Zambelli" via Giovanni Paolo II 84081 Fisciano SA ITALY
| |
Collapse
|
8
|
Qing Y, Liu T, Zhao B, Bao X, Yuan D, Yao Y. Cycloaddition of di-substituted epoxides and CO 2 under ambient conditions catalysed by rare-earth poly(phenolate) complexes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00592a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lanthanum complex 1/TBAI is the first catalyst to achieve the cycloaddition of 1,2-disubstituted epoxides with 1 bar CO2 at room temperature. A DFT study discloses that the poly(phenolato) ligand plays a key role in the product dissociation step.
Collapse
Affiliation(s)
- Yuting Qing
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Tiantian Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Bei Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaoguang Bao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Dan Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
9
|
Moustafa G, Sabry E, Zayed EM, Mohamed GG. Structural characterization, spectroscopic studies, and molecular docking studies on metal complexes of new hexadentate cyclic peptide ligand. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gaber Moustafa
- Peptides Chemistry Department National Research Centre Giza Egypt
| | - Eman Sabry
- Pesticide Chemistry Department National Research Centre Giza Egypt
| | - Ehab M. Zayed
- Green Chemistry Department National Research Centre Giza Egypt
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science Cairo University Giza Egypt
| |
Collapse
|
10
|
Unexpected “ferrate” species as single-component catalyst for the cycloaddition of CO2 to epoxides. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Kim JH, Lee SH, Kim NH, Kang EJ. Sustainable synthesis of five-membered heterocycles using carbon dioxide and Fe-iminopyridine catalysts. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Cheng J, Lu C, Zhao B. Cycloaddition of carbon dioxide and epoxides catalyzed by rare earth metal complexes bearing a Trost ligand. NEW J CHEM 2021. [DOI: 10.1039/d1nj02460d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Rare earth metal complexes containing Trost ligands were used to catalyze the cycloaddition reaction of epoxides with CO2. A series of epoxides were successfully converted into the corresponding cyclic carbonates under mild conditions.
Collapse
Affiliation(s)
- Jun Cheng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry
- Chemical Engineering and Materials Science
- Dushu Lake Campus
- Soochow University
- Suzhou 215123
| | - Chengrong Lu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry
- Chemical Engineering and Materials Science
- Dushu Lake Campus
- Soochow University
- Suzhou 215123
| | - Bei Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry
- Chemical Engineering and Materials Science
- Dushu Lake Campus
- Soochow University
- Suzhou 215123
| |
Collapse
|
13
|
Prasad D, Patil KN, Chaudhari NK, Kim H, Nagaraja BM, Jadhav AH. Paving way for sustainable earth-abundant metal based catalysts for chemical fixation of CO2 into epoxides for cyclic carbonate formation. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2020. [DOI: 10.1080/01614940.2020.1812212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Divya Prasad
- Centre for Nano and Material Science (CNMS), Jain University, Jain Global Campus, 562112, Bangalore, Karnataka, India
| | - Komal N. Patil
- Centre for Nano and Material Science (CNMS), Jain University, Jain Global Campus, 562112, Bangalore, Karnataka, India
| | - Nitin K. Chaudhari
- Department of Chemistry, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat, 382007, India
| | - Hern Kim
- Department of Energy Science and Technology, Smart Living Innovation Technology Center, Myongji University, 17058, Yongin, Gyeonggi-do, South Korea
| | - Bhari Mallanna Nagaraja
- Centre for Nano and Material Science (CNMS), Jain University, Jain Global Campus, 562112, Bangalore, Karnataka, India
| | - Arvind H. Jadhav
- Centre for Nano and Material Science (CNMS), Jain University, Jain Global Campus, 562112, Bangalore, Karnataka, India
| |
Collapse
|
14
|
Chen F, Tao S, Liu N, Guo C, Dai B. Hemilabile
N
‐heterocyclic carbene and nitrogen ligands on Fe (II) catalyst for utilization of CO
2
into cyclic carbonate. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Fei Chen
- School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Sheng Tao
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi China
| | - Ning Liu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi China
| | - Cheng Guo
- Cancer Institute, The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Bin Dai
- School of Chemical Engineering and Technology Tianjin University Tianjin China
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi China
| |
Collapse
|
15
|
Fernández-Baeza J, Sánchez-Barba LF, Lara-Sánchez A, Sobrino S, Martínez-Ferrer J, Garcés A, Navarro M, Rodríguez AM. NNC-Scorpionate Zirconium-Based Bicomponent Systems for the Efficient CO 2 Fixation into a Variety of Cyclic Carbonates. Inorg Chem 2020; 59:12422-12430. [PMID: 32811145 DOI: 10.1021/acs.inorgchem.0c01532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two new derivatives of the bis(3,5-dimethylpyrazol-1-yl)methane modified by introduction of organosilyl groups on the central carbon atom, one of which bearing a chiral fragment, have been easily prepared. We verified the potential utility of these compounds through the reaction with [Zr(NMe2)4] for the preparation of novel zirconium complexes in which an ancillary bis(pyrazol-1-yl)methanide acts as a robust monoanionic tridentate scorpionate in a κ3-NNC chelating mode, forming strained four-membered heterometallacycles. These κ3-NNC-scorpionate zirconium amides were investigated as catalysts in combination with tetra-n-butylammonium bromide as cocatalyst for CO2 fixation into five-membered cyclic carbonate products. The study has led to the development of an efficient zirconium-based bicomponent system for the selective cycloaddition reaction of CO2 with epoxides. Kinetics investigations confirmed apparent first-order dependence on the catalyst and cocatalyst concentrations. In addition, this system displays very broad substrate scope, including mono- and disubstituted substrates, as well as the challenging biorenewable terpene derived limonene oxide, under mild and solvent-free conditions.
Collapse
Affiliation(s)
- Juan Fernández-Baeza
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus Universitario, 13071-Ciudad Real, Spain
| | - Luis F Sánchez-Barba
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles-28933-Madrid, Spain
| | - Agustín Lara-Sánchez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus Universitario, 13071-Ciudad Real, Spain
| | - Sonia Sobrino
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus Universitario, 13071-Ciudad Real, Spain
| | - Jaime Martínez-Ferrer
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus Universitario, 13071-Ciudad Real, Spain
| | - Andrés Garcés
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles-28933-Madrid, Spain
| | - Marta Navarro
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles-28933-Madrid, Spain
| | - Ana M Rodríguez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus Universitario, 13071-Ciudad Real, Spain
| |
Collapse
|
16
|
Guo Z, Xu Y, Chao J, Wei X. Lithium Organoaluminate Complexes as Catalysts for the Conversion of CO
2
into Cyclic Carbonates. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhiqiang Guo
- Scientific Instrument Center Shanxi University 030006 Taiyuan P. R. China
| | - Yuan Xu
- School of Chemistry and Chemical Engineering Shanxi University 030006 Taiyuan P. R. China
| | - Jianbin Chao
- Scientific Instrument Center Shanxi University 030006 Taiyuan P. R. China
| | - Xuehong Wei
- Institute of Applied Chemistry Shanxi University 030006 Taiyuan P. R. China
| |
Collapse
|
17
|
Navarro M, Sánchez-Barba LF, Garcés A, Fernández-Baeza J, Fernández I, Lara-Sánchez A, Rodríguez AM. Bimetallic scorpionate-based helical organoaluminum complexes for efficient carbon dioxide fixation into a variety of cyclic carbonates. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00593b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The binuclear aluminum complexes [AlR2(κ2-NN′;κ2-NN′)AlR2] with TBAB/PPNCl behave as excellent systems for cyclic carbonate formation from CO2 with challenging epoxides.
Collapse
Affiliation(s)
- Marta Navarro
- Departamento de Biología y Geología
- Física y Química Inorgánica
- Universidad Rey Juan Carlos
- Móstoles
- Spain
| | - Luis F. Sánchez-Barba
- Departamento de Biología y Geología
- Física y Química Inorgánica
- Universidad Rey Juan Carlos
- Móstoles
- Spain
| | - Andrés Garcés
- Departamento de Biología y Geología
- Física y Química Inorgánica
- Universidad Rey Juan Carlos
- Móstoles
- Spain
| | - Juan Fernández-Baeza
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Castilla-La Mancha
- Ciudad Real
- Spain
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- Madrid
- Spain
| | - Agustín Lara-Sánchez
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Castilla-La Mancha
- Ciudad Real
- Spain
| | - Ana M. Rodríguez
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Castilla-La Mancha
- Ciudad Real
- Spain
| |
Collapse
|
18
|
Cho K, Lee SM, Kim HJ, Ko Y, Kang EJ, Son SU. Iron Coordination to Hollow Microporous Metal‐Free Disalphen Networks: Heterogeneous Iron Catalysts for CO
2
Fixation to Cyclic Carbonates. Chemistry 2019; 26:788-794. [DOI: 10.1002/chem.201904344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/19/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Kyoungil Cho
- Department of chemistry Sungkyunkwan University Suwon 16419 Korea
| | | | - Hae Jin Kim
- Korea Basic Science Institute Daejeon 34133 Korea
| | - Yoon‐Joo Ko
- Laboratory of Nuclear Magnetic Resonance National Center for Inter-University Research Facilities (NCIRF) Seoul National University Seoul 08826 Korea
| | - Eun Joo Kang
- Department of Applied Chemistry Kyung Hee University Yongin 17104 Korea
| | - Seung Uk Son
- Department of chemistry Sungkyunkwan University Suwon 16419 Korea
| |
Collapse
|
19
|
Kim NH, Seong EY, Kim JH, Lee SH, Ahn KH, Kang EJ. Functionally-designed heteroleptic Fe-bisiminopyridine systems for the transformation of carbon dioxide. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Wang H, Zhang Z, Wang H, Guo L, Li L. Metal β-diketonate complexes as highly efficient catalysts for chemical fixation of CO 2 into cyclic carbonates under mild conditions. Dalton Trans 2019; 48:15970-15976. [PMID: 31595278 DOI: 10.1039/c9dt03584b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The potential of metal β-diketonate complexes for the catalysis of the chemical fixation of CO2 into cyclic carbonates at 1 atm CO2 and near room temperature was demonstrated. Their potential for the capture and simultaneous conversion of CO2 in a dilute CO2 stream was also determined. The catalysts were easily synthesized and commercially available. Therefore, this CO2 transformation was less energy- and material-consuming, which made this reaction closer to true "green" chemistry.
Collapse
Affiliation(s)
- Hongmei Wang
- College of Biological, Chemical Science and Engineering, Jiaxing 314001, China.
| | - Zulei Zhang
- College of Biological, Chemical Science and Engineering, Jiaxing 314001, China.
| | - Hailong Wang
- College of Biological, Chemical Science and Engineering, Jiaxing 314001, China.
| | - Liping Guo
- College of Biological, Chemical Science and Engineering, Jiaxing 314001, China.
| | - Lei Li
- College of Biological, Chemical Science and Engineering, Jiaxing 314001, China.
| |
Collapse
|
21
|
Kamphuis AJ, Milocco F, Koiter L, Pescarmona PP, Otten E. Highly Selective Single-Component Formazanate Ferrate(II) Catalysts for the Conversion of CO 2 into Cyclic Carbonates. CHEMSUSCHEM 2019; 12:3635-3641. [PMID: 31038791 DOI: 10.1002/cssc.201900740] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/30/2019] [Indexed: 06/09/2023]
Abstract
The development of new families of active and selective single-component catalysts based on earth-abundant metal is of interest from a sustainable chemistry perspective. In this context, anionic mono(formazanate) iron(II) complexes bearing labile halide ligands, which possess both Lewis acidic and nucleophilic functionalities, have been developed as novel single-component homogeneous catalysts for the reaction of CO2 with epoxides to produce cyclic carbonates. The influence of the halide ligand and the electronic properties of the formazanate ligand backbone on the catalytic activity are investigated by employing the iron(II) complexes with and without an additional nucleophile. Very high selectivity is achieved towards the formation of the cyclic carbonate products from various terminal and internal epoxides without the need of a cocatalyst.
Collapse
Affiliation(s)
- Aeilke J Kamphuis
- Chemical Engineering Group, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Francesca Milocco
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Luuk Koiter
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Paolo P Pescarmona
- Chemical Engineering Group, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Edwin Otten
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| |
Collapse
|