1
|
Krbečková V, Plachá D. Raw biowaste conversion to high-value compounds for food, cosmetic and pharmaceutical industries. ENVIRONMENTAL RESEARCH 2024; 263:120134. [PMID: 39389193 DOI: 10.1016/j.envres.2024.120134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
Biowaste valorisation into high-value compounds is one of the main challenges of green chemistry, as chemicals produced from biological sources are identified as key substances in the development of a low-carbon and circular bioeconomy in connection with the transition from fossil to renewable feedstocks. The review summarizes the production of high-value products such as glucose-based chemicals, phenolic compounds and volatile-fatty acids prepared from biomass waste. Biowaste pretreatment methods such as milling, filtration and extraction followed by current non-catalytic methods such as microwave or ultrasound extraction and catalytic methods for the production value-added compounds in the presence of various catalyst types in conventional, nano or enzyme form are listed with a focus on value-added chemicals applied in the food, cosmetic and pharmaceutical industries. The economic feasibility, technical aspects and concept of the biorefinery are briefly mentioned, emphasizing the necessity of life cycle assessment for each bioproduct and technological process. Finally, it provides a future perspective and makes recommendations for potential research strategies, recognizing the importance of utilizing biomass waste for the production of useful compounds as an attractive and environmentally friendly approach whose development should be encouraged. The utilization of biowaste for high-value chemicals production shows high potential, however, there are still many challenges to be resolved throughout the entire production chain, reflecting technological, economic, ecological, sociological and long-term issues.
Collapse
Affiliation(s)
- Veronika Krbečková
- Nanotechnology Centre, CEET, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Poruba, Czech Republic; Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Daniela Plachá
- Nanotechnology Centre, CEET, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Poruba, Czech Republic.
| |
Collapse
|
2
|
Carbon-Based Nanocatalysts (CnCs) for Biomass Valorization and Hazardous Organics Remediation. NANOMATERIALS 2022; 12:nano12101679. [PMID: 35630900 PMCID: PMC9147642 DOI: 10.3390/nano12101679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023]
Abstract
The continuous increase of the demand in merchandise and fuels augments the need of modern approaches for the mass-production of renewable chemicals derived from abundant feedstocks, like biomass, as well as for the water and soil remediation pollution resulting from the anthropogenic discharge of organic compounds. Towards these directions and within the concept of circular (bio)economy, the development of efficient and sustainable catalytic processes is of paramount importance. Within this context, the design of novel catalysts play a key role, with carbon-based nanocatalysts (CnCs) representing one of the most promising class of materials. In this review, a wide range of CnCs utilized for biomass valorization towards valuable chemicals production, and for environmental remediation applications are summarized and discussed. Emphasis is given in particular on the catalytic production of 5-hydroxymethylfurfural (5-HMF) from cellulose or starch-rich food waste, the hydrogenolysis of lignin towards high bio-oil yields enriched predominately in alkyl and oxygenated phenolic monomers, the photocatalytic, sonocatalytic or sonophotocatalytic selective partial oxidation of 5-HMF to 2,5-diformylfuran (DFF) and the decomposition of organic pollutants in aqueous matrixes. The carbonaceous materials were utilized as stand-alone catalysts or as supports of (nano)metals are various types of activated micro/mesoporous carbons, graphene/graphite and the chemically modified counterparts like graphite oxide and reduced graphite oxide, carbon nanotubes, carbon quantum dots, graphitic carbon nitride, and fullerenes.
Collapse
|
3
|
Zheng Y, Huang X, Chen J, Wu K, Wang J, Zhang X. A Review of Conductive Carbon Materials for 3D Printing: Materials, Technologies, Properties, and Applications. MATERIALS 2021; 14:ma14143911. [PMID: 34300829 PMCID: PMC8307564 DOI: 10.3390/ma14143911] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 11/25/2022]
Abstract
Carbon material is widely used and has good electrical and thermal conductivity. It is often used as a filler to endow insulating polymer with electrical and thermal conductivity. Three-dimensional printing technology is an advance in modeling and manufacturing technology. From the forming principle, it offers a new production principle of layered manufacturing and layer by layer stacking formation, which fundamentally simplifies the production process and makes large-scale personalized production possible. Conductive carbon materials combined with 3D printing technology have a variety of potential applications, such as multi-shape sensors, wearable devices, supercapacitors, and so on. In this review, carbon black, carbon nanotubes, carbon fiber, graphene, and other common conductive carbon materials are briefly introduced. The working principle, advantages and disadvantages of common 3D printing technology are reviewed. The research situation of 3D printable conductive carbon materials in recent years is further summarized, and the performance characteristics and application prospects of these conductive carbon materials are also discussed. Finally, the potential applications of 3D printable conductive carbon materials are concluded, and the future development direction of 3D printable conductive carbon materials has also been prospected.
Collapse
Affiliation(s)
- Yanling Zheng
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China;
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Universities and Colleges Engineering Research Center of Modern Facility Agriculture, Fujian Polytechnic Normal University, Fuzhou 350300, China
| | - Xu Huang
- School of Mechanical & Automotive Engineering, Fujian University of Technology, Fuzhou 350118, China;
| | - Jialiang Chen
- National Garment and Accessories Quality Supervision Testing Center (Fujian), Fujian Provincial Key Laboratory of Textiles Inspection Technology, Fujian Fiber Inspection Center, Fuzhou 350026, China;
| | - Kechen Wu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China;
| | - Jianlei Wang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China;
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Universities and Colleges Engineering Research Center of Modern Facility Agriculture, Fujian Polytechnic Normal University, Fuzhou 350300, China
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China;
- Correspondence: (J.W.); (X.Z.)
| | - Xu Zhang
- Innovation Center for Textile Science and Technology, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Correspondence: (J.W.); (X.Z.)
| |
Collapse
|
4
|
Zhang J, Wang Y, Du X, Qu Y. Selective removal of lignin to enhance the process of preparing fermentable sugars and platform chemicals from lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2020; 303:122846. [PMID: 32032935 DOI: 10.1016/j.biortech.2020.122846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 05/15/2023]
Abstract
The economic dependency on fossil fuels and the resulting effects on climate and environment have put more focus on finding alternative renewable sources (e.g. lignocellulose) for the production of fuels and chemicals. Nevertheless, the yield and quality of fermentable sugar and platform chemical produced by directly degradation of lignocellulose are severely restricted owing to the presence of lignin and its derivatives. Therefore, the present study was aimed to selective removal of lignin to enhance the process of preparing fermentable sugars and platform chemicals from lignocellulosic biomass. The results showed that the highest degree of delignification was 92.01%. Reducing sugar obtained by enzymatic hydrolysis of lignocellulose was suitable for L-lactic acid fermentation without appreciable inhibition. The highest cellulose digestibility and yield of 5-HMF were 90.67% and 61.02%, respectively. SO42-/ZrO2 could be reused at least 5 times without appreciable loss of catalytic performance, which shows an industrial application prospects in biorefinery.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuehai Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojia Du
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongshui Qu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|