1
|
Ma WY, Leone M, Derat E, Retailleau P, Reddy CR, Neuville L, Masson G. Photocatalytic Asymmetric Acyl Radical Truce-Smiles Rearrangement for the Synthesis of Enantioenriched α-Aryl Amides. Angew Chem Int Ed Engl 2024; 63:e202408154. [PMID: 38887967 DOI: 10.1002/anie.202408154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
The radical Truce-Smiles rearrangement is a straightforward strategy for incorporating aryl groups into organic molecules for which asymmetric processes remains rare. By employing a readily available and non-expensive chiral auxiliary, we developed a highly efficient asymmetric photocatalytic acyl and alkyl radical Truce-Smiles rearrangement of α-substituted acrylamides using tetrabutylammonium decatungstate (TBADT) as a hydrogen atom-transfer photocatalyst, along with aldehydes or C-H containing precursors. The rearranged products exhibited excellent diastereoselectivities (7 : 1 to >98 : 2 d.r.) and chiral auxiliary was easily removed. Mechanistic studies allowed understanding the transformation in which density functional theory (DFT) calculations provided insights into the stereochemistry-determining step.
Collapse
Affiliation(s)
- Wei-Yang Ma
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Matteo Leone
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Etienne Derat
- Sorbonne Université, Faculté des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 place Jussieu, 75005, Paris, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry CSIR-, Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| |
Collapse
|
2
|
Wang Y, Liu J, Sun W, Zhou Y, Wang X, Hu Q, Wen Z, Yao J, Li H. Oxygenation of Phenols with Water as the Oxygen Source and Oxoammonium Salt as the Oxidant. J Org Chem 2024; 89:2440-2447. [PMID: 38306296 DOI: 10.1021/acs.joc.3c02448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Aromatic C-H oxygenation is important in both industrial production and organic synthesis. Here we report a metal-free approach for phenol oxygenation with water as the oxygen source using oxoammonium salts as the renewable oxidant. Employing this protocol, various alkyl-substituted phenols were converted into benzoquinones in yields of 59-98%. On the basis of 18O-labeling and kinetic studies, the hydroxy-oxoammonium adduct was proposed to attack the aromatic ring similarly to electrophilic aromatic substitution. We suppose that the findings described here not only provide an efficient and highly selective protocol for aromatic C-H oxygenation but also may encourage further developments of possible transition-metal-free catalytic methods.
Collapse
Affiliation(s)
- Yongtao Wang
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
- Center of Chemistry for Frontier Technologies, ZJU-NHU United R&D Center, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Jiaxin Liu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Wenjing Sun
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Yujia Zhou
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Xinyu Wang
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Qixuan Hu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Zeyu Wen
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Jia Yao
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
- Center of Chemistry for Frontier Technologies, ZJU-NHU United R&D Center, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Haoran Li
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
- Center of Chemistry for Frontier Technologies, ZJU-NHU United R&D Center, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| |
Collapse
|
3
|
Cho H, Jang S, Lee K, Cha D, Min SJ. Visible-Light-Induced DDQ-Catalyzed Fluorocarbamoylation Using CF 3SO 2Na and Oxygen. Org Lett 2023. [PMID: 37987781 DOI: 10.1021/acs.orglett.3c03335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The synthesis of carbamoyl fluorides via visible-light induced DDQ catalysis of secondary amines is described. This protocol employs sodium trifluorosulfinate and molecular oxygen for the in situ generation of carbonyl difluoride, which is reacted with amines to afford the corresponding carbamoyl fluorides efficiently. Moreover, carbamoyl fluorides are easily transformed to synthetically useful carbonyl compounds under mild reaction conditions.
Collapse
Affiliation(s)
- Huijeong Cho
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Seonga Jang
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Kangjoo Lee
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Dohoon Cha
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Sun-Joon Min
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Department of Chemical & Molecular Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
4
|
Talpada N, Sharma AS, Sharma VS, Varma RS, Shrivastav PS, Ahmed R, Ammathnadu Sudhakar A. Visible light mediated synthesis of 1,3-diarylated imidazo[1,5- a]pyridines via oxidative amination of C-H catalyzed by graphitic carbon nitride. Org Biomol Chem 2023. [PMID: 37969017 DOI: 10.1039/d3ob01636f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Graphitic carbon nitride (g-C3N4) as a novel heterogeneous catalyst is employed for the visible light-mediated synthesis of the imidazo[1,5-a]pyridines via the oxidative amination of C-H bond at room temperature without the need for any additional solvent. Extensive characterization of the catalyst was performed using techniques such as FT-IR, PXRD, TGA, SEM and EDX analysis. The optimized conditions enabled the successful and expeditious conversion of a wide range of substrates to imidazo[1,5-a]pyridines in good yields; a notable advantage of this catalyst being recyclability, as it can be reused for up to five cycles without significant loss of activity. This feature makes it suitable for gram-scale synthesis of imidazo[1,5-a]pyridines. Additionally, this approach offers several benefits from a green chemistry perspective as affirmed by its favorable green chemistry metrics (GCM), including low process mass intensity (PMI), low E-factor, high atom economy (AE), and good reaction mass efficiency (RME) relative to existing protocols. In addition, chemical yield (CY), mass intensity (MI), mass productivity (MP) and optimum efficiency were also calculated. This environmentally friendly method offers multiple advantages and represents a significant advancement in the synthesis of imidazo[1,5-a]pyridines.
Collapse
Affiliation(s)
- Nandish Talpada
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India.
| | - Anuj S Sharma
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India.
| | - Vinay S Sharma
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Pranav S Shrivastav
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India.
| | - Rahul Ahmed
- Department of Chemistry, Indian Institute of Technology, Guwahati, 781039, Assam, India.
| | - Achalkumar Ammathnadu Sudhakar
- Department of Chemistry, Indian Institute of Technology, Guwahati, 781039, Assam, India.
- Centre for Sustainable Polymers, Indian Institute of Technology, Guwahati, 781039, Assam, India
| |
Collapse
|
5
|
Gobbato T, Volpato GA, Sartorel A, Bonchio M. A breath of sunshine: oxygenic photosynthesis by functional molecular architectures. Chem Sci 2023; 14:12402-12429. [PMID: 38020375 PMCID: PMC10646967 DOI: 10.1039/d3sc03780k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
The conversion of light into chemical energy is the game-changer enabling technology for the energetic transition to renewable and clean solar fuels. The photochemistry of interest includes the overall reductive/oxidative splitting of water into hydrogen and oxygen and alternatives based on the reductive conversion of carbon dioxide or nitrogen, as primary sources of energy-rich products. Devices capable of performing such transformations are based on the integration of three sequential core functions: light absorption, photo-induced charge separation, and the photo-activated breaking/making of molecular bonds via specific catalytic routes. The key to success does not rely simply on the individual components' performance, but on their optimized integration in terms of type, number, geometry, spacing, and linkers dictating the photosynthetic architecture. Natural photosynthesis has evolved along this concept, by integrating each functional component in one specialized "body" (from the Greek word "soma") to enable the conversion of light quanta with high efficiency. Therefore, the natural "quantasome" represents the key paradigm to inspire man-made constructs for artificial photosynthesis. The case study presented in this perspective article deals with the design of artificial photosynthetic systems for water oxidation and oxygen production, engineered as molecular architectures then rendered on electrodic surfaces. Water oxidation to oxygen is indeed the pervasive oxidative reaction used by photosynthetic organisms, as the source of reducing equivalents (electrons and protons) to be delivered for the processing of high-energy products. Considering the vast and abundant supply of water (including seawater) as a renewable source on our planet, this is also a very appealing option for photosynthetic energy devices. We will showcase the progress in the last 15 years (2009-2023) in the strategies for integrating functional building blocks as molecular photosensitizers, multi-redox water oxidation catalysts and semiconductor materials, highlighting how additional components such as redox mediators, hydrophilic/hydrophobic pendants, and protective layers can impact on the overall photosynthetic performance. Emerging directions consider the modular tuning of the multi-component device, in order to target a diversity of photocatalytic oxidations, expanding the scope of the primary electron and proton sources while enhancing the added-value of the oxidation product beyond oxygen: the selective photooxidation of organics combines the green chemistry vision with renewable energy schemes and is expected to explode in coming years.
Collapse
Affiliation(s)
- Thomas Gobbato
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
| | - Giulia Alice Volpato
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
| | - Andrea Sartorel
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
| | - Marcella Bonchio
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
- ITM-CNR Section of Padova, INSTM Unit of Padova via Marzolo 1 35131 Padova Italy
| |
Collapse
|
6
|
Shen D, Zhong F, Ren T, Li L, Li Z, Yin J, Gong P, Zhang F, Lv C, Chao M. Alkyne Oxidation by a Vitamin B2-Based Photocatalytic System with Both H 2O and O 2 as the Oxygen Source. J Org Chem 2023; 88:15270-15281. [PMID: 37852799 DOI: 10.1021/acs.joc.3c01760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The employment of readily available photocatalysts and green oxygen atom sources is recognized as a promising strategy to develop sustainable catalysis for oxidation reactions. We herein reported a sacrificial reagent-free system consisting of riboflavin tetraacetate (RFT), an ester of natural vitamin B2 as the photocatalyst, and Sc(OTf)3 and NaCl as the cocatalysts for alkyne oxidation under blue light or even sunlight irradiation to produce 1,2-diketone in which the oxygen atoms were from both water and molecular oxygen, respectively. A major Cl-/Cl• cycle was proposed to be involved and achieved by the excited [RFT-2Sc3+]* complex via single electron transfer for the first time, distinguished from the OCl- active species by a two-electron process in previous flavin-halide photo-oxidation systems.
Collapse
Affiliation(s)
- Duyi Shen
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000, P. R. China
| | - Fubi Zhong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Ting Ren
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Linghui Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zihan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Junzhong Yin
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Peiwei Gong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Fanjun Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Chengwei Lv
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Mianran Chao
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
7
|
Nakayama K, Okada Y. Arene C-H Amination with N-Heteroarenes by Catalytic DDQ Photocatalysis. J Org Chem 2023; 88:5913-5922. [PMID: 37097131 DOI: 10.1021/acs.joc.3c00293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Arene C-H aminations using catalytic amounts of a 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) photocatalyst are described. Benzene, which has an oxidation potential of 2.48 V (vs SCE), was functionalized by pyrazoles, triazoles, tetrazoles, purines, and tert-butoxycarbonyl amine. Arenes underwent amination via a combination of ultraviolet (UV) light and a DDQ photocatalyst without a typical co-oxidant. Although the mechanism remains an open question, DDQH2, which is generated from DDQ after oxidation, is reactivated to DDQ under UV light irradiation conditions, possibly with the assistance of adventitious O2 and/or a solvent as the terminal oxidant(s) in this system.
Collapse
Affiliation(s)
- Kaii Nakayama
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yohei Okada
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
8
|
Zhuang W, Zhang J, Ma C, Wright JS, Zhang X, Ni SF, Huang Q. Scalable Electrochemical Aerobic Oxygenation of Indoles to Isatins without Electron Transfer Mediators by Merging with an Oxygen Reduction Reaction. Org Lett 2022; 24:4229-4233. [PMID: 35678516 DOI: 10.1021/acs.orglett.2c01545] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An approach to electrochemical oxygenation of indoles leading to isatins was developed by merging with a complementary cathode oxygen reduction reaction. The features of this green protocol include the use of molecular oxygen as the sole oxidant, it being free of an electron transfer mediator, and gram-scale preparation. Mechanistic studies suggested a radical process, and the two oxygen atoms in the isatins were both most likely from molecular oxygen. A detailed mechanism of the reaction utilizing density functional theory calculations was elucidated.
Collapse
Affiliation(s)
- Weihui Zhuang
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Jiaqi Zhang
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Cheng Ma
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - James S Wright
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, Surrey, U.K
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| |
Collapse
|
9
|
Natali M, Sartorel A, Ruggi A. Beyond Water Oxidation: Hybrid, Molecular-Based Photoanodes for the Production of Value-Added Organics. Front Chem 2022; 10:907510. [PMID: 35692692 PMCID: PMC9175021 DOI: 10.3389/fchem.2022.907510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
The political and environmental problems related to the massive use of fossil fuels prompted researchers to develop alternative strategies to obtain green and renewable fuels such as hydrogen. The light-driven water splitting process (i.e., the photochemical decomposition of water into hydrogen and oxygen) is one of the most investigated strategies to achieve this goal. However, the water oxidation reaction still constitutes a formidable challenge because of its kinetic and thermodynamic requirements. Recent research efforts have been focused on the exploration of alternative and more favorable oxidation processes, such as the oxidation of organic substrates, to obtain value-added products in addition to solar fuels. In this mini-review, some of the most intriguing and recent results are presented. In particular, attention is directed on hybrid photoanodes comprising molecular light-absorbing moieties (sensitizers) and catalysts grafted onto either mesoporous semiconductors or conductors. Such systems have been exploited so far for the photoelectrochemical oxidation of alcohols to aldehydes in the presence of suitable co-catalysts. Challenges and future perspectives are also briefly discussed, with special focus on the application of such hybrid molecular-based systems to more challenging reactions, such as the activation of C–H bonds.
Collapse
Affiliation(s)
- Mirco Natali
- Department of Chemical Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Ferrara, Italy
- *Correspondence: Mirco Natali, ; Andrea Sartorel, ; Albert Ruggi,
| | - Andrea Sartorel
- Dipartimento di Scienze Chimiche, Università di Padova, Padova, Italy
- *Correspondence: Mirco Natali, ; Andrea Sartorel, ; Albert Ruggi,
| | - Albert Ruggi
- Département de Chimie, Université de Fribourg, Fribourg, Switzerland
- *Correspondence: Mirco Natali, ; Andrea Sartorel, ; Albert Ruggi,
| |
Collapse
|
10
|
Kumar S, Singh S, Kumar A, Murthy K, Kumar Singh A. pH-Responsive luminescence sensing, photoredox catalysis and photodynamic applications of ruthenium(II) photosensitizers bearing imidazo[4,5-f][1,10]phenanthroline scaffolds. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Wang YH, Yang Q, Walsh PJ, Schelter EJ. Light-mediated aerobic oxidation of C(sp 3)–H bonds by a Ce( iv) hexachloride complex. Org Chem Front 2022. [DOI: 10.1039/d2qo00362g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A photochemical C(sp3)–H oxygenation of arene and alkane substrates (including methane) catalyzed by [NEt4]2[CeIVCl6] under mild conditions (1 atm, 25 °C) is described.
Collapse
Affiliation(s)
- Yu-Heng Wang
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Qiaomu Yang
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Patrick J. Walsh
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Eric J. Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
12
|
Singh S, Nautiyal D, Thetiot F, Le Poul N, Goswami T, Kumar A, Kumar S. Bioinspired Heterobimetallic Photocatalyst ( RuIIchrom-FeIIIcat) for Visible-Light-Driven C-H Oxidation of Organic Substrates via Dioxygen Activation. Inorg Chem 2021; 60:16059-16064. [PMID: 34662098 DOI: 10.1021/acs.inorgchem.1c02514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a bioinspired heterobimetallic photocatalyst RuIIchrom-FeIIIcat and its relevant applications toward visible-light-driven C-H bond oxidation of a series of hydrocarbons using O2 as the O-atom source. The RuII center absorbs visible light near 460 nm and triggers a cascade of electrons to FeIII to afford a catalytically active high-valent FeIV═O species. The in situ formed FeIV═O has been employed for several high-impact oxidation reactions in the presence of triethanolamine (TEOA) as the sacrificial electron donor.
Collapse
Affiliation(s)
- Siddhant Singh
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun 248001, Uttarakhand, India
| | - Divyanshu Nautiyal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun 248001, Uttarakhand, India
| | - Franck Thetiot
- CEMCA, CNRS, UMR 6521, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, CS 93837, Brest 29238, France
| | - Nicolas Le Poul
- CEMCA, CNRS, UMR 6521, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, CS 93837, Brest 29238, France
| | - Tapas Goswami
- Department of Chemistry, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun 248001, Uttarakhand, India
| | - Sushil Kumar
- Department of Chemistry, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
13
|
Feng T, Ding J, Li H, Wang W, Dong B, Cao L. Amorphous Fe(OH) 3 Passivating CeO 2 Nanorods: A Noble-Metal-Free Photocatalyst for Water Oxidation. CHEMSUSCHEM 2021; 14:3382-3390. [PMID: 34227731 DOI: 10.1002/cssc.202101061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Noble-metal-free composites with good photocatalytic property are of great interest. Here, CeO2 nanorods composites loaded with amorphous Fe(OH)3 cocatalyst were designed and prepared via a secondary water bath at 100 °C. The as-synthesized CeO2 /amorphous Fe(OH)3 composites exhibited superior light photocatalytic activities compared to pure CeO2 , especially the sample with a loading time of 60 min. The photocatalytic oxygen generation rate could reach to 357.2 μmol h-1 g-1 , and the average apparent quantum yield (AQY) was 24.67 %, which was a 5.5-fold increase compared to the CeO2 sample. The improvement of photocatalytic performance could be ascribed to three main reasons: First, loading the amorphous Fe(OH)3 enlarged the specific surface area and passivated the surface of the pristine CeO2 . Second, the amorphous Fe(OH)3 ,which acted as a cocatalyst, provided many active sites, and reduced the reaction activation energy. Thirdly, the maximum interface with intimate contact between CeO2 and amorphous Fe(OH)3 cocatalyst accelerated the photogenerated charge separation efficiency and thus improved the photocatalytic performance of CeO2 in photocatalytic water oxidation.
Collapse
Affiliation(s)
- Ting Feng
- College of Materials Science and Engineering, Ocean University of China, Songling road No. 238, QingDao city, P. R. China
| | - Jing Ding
- College of Materials Science and Engineering, Ocean University of China, Songling road No. 238, QingDao city, P. R. China
| | - Haiyan Li
- College of Materials Science and Engineering, Ocean University of China, Songling road No. 238, QingDao city, P. R. China
| | - Wei Wang
- College of Materials Science and Engineering, Ocean University of China, Songling road No. 238, QingDao city, P. R. China
- Aramco Research Center-Boston, Aramco Services Company, Cambridge, MA 02139, USA
| | - Bohua Dong
- College of Materials Science and Engineering, Ocean University of China, Songling road No. 238, QingDao city, P. R. China
| | - Lixin Cao
- College of Materials Science and Engineering, Ocean University of China, Songling road No. 238, QingDao city, P. R. China
| |
Collapse
|
14
|
Sujatha C, Nallagangula M, Namitharan K. Harnessing In Situ Radical Oxygenation: Copper-Catalyzed Interrupted Azirine-Alkyne Ring-Expansion Reaction for the Synthesis of Pyrrolones. Org Lett 2021; 23:4219-4223. [PMID: 34010563 DOI: 10.1021/acs.orglett.1c01162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we report a novel interrupted azirine-alkyne ring-expansion reaction with molecular oxygen for the direct synthesis of highly functionalized pyrrolones enabled by copper catalysis. Mechanistic investigations indicate that the present three-component reaction proceeds via two copper-catalyzed sequential reactions, an azirine-ring-opening alkynylation and an amine-directed radical oxygenation, leading to the formation of interesting pyrrolone structures under mild conditions.
Collapse
Affiliation(s)
- Chandragiri Sujatha
- Organic Synthesis and Catalysis Laboratory, SRM Research Institute and Department of Chemistry, SRMIST, Kattankulathur 603 203, Tamil Nadu, India
| | - Madhu Nallagangula
- Organic Synthesis and Catalysis Laboratory, SRM Research Institute and Department of Chemistry, SRMIST, Kattankulathur 603 203, Tamil Nadu, India
| | - Kayambu Namitharan
- Organic Synthesis and Catalysis Laboratory, SRM Research Institute and Department of Chemistry, SRMIST, Kattankulathur 603 203, Tamil Nadu, India.,Amity Institute of Click Chemistry Research and Studies, Amity University, Noida 201 301, Uttar Pradesh, India
| |
Collapse
|
15
|
Natarajan P, König B. Excited‐State 2,3‐Dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ*) Initiated Organic Synthetic Transformations under Visible‐Light Irradiation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Palani Natarajan
- Department of Chemistry and Centre for Advanced Studies Panjab University Chandigarh 160014, U.T. India
| | - Burkhard König
- Faculty for Chemistry and Pharmacy University of Regensburg 93040 Regensburg Germany
| |
Collapse
|
16
|
Liu H, Zhang J, Huang G, Zhou Y, Chen Y, Xu Y. Visible Light‐Promoted Selenylation/Cyclization of Enaminones toward the Formation of 3‐Selanyl‐4H‐Chromen‐4‐Ones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001474] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hao‐Yang Liu
- Pharmacy School of Guilin Medical University Guilin 541004 People's Republic of China
| | - Jia‐Rong Zhang
- Pharmacy School of Guilin Medical University Guilin 541004 People's Republic of China
| | - Guo‐Bao Huang
- Key Laboratory of Agricultural Resources Chemistry and Biotechnology College of Chemistry and Food Science of Yulin Normal University Yulin 537000 People's Republic of China
| | - Yi‐Huan Zhou
- Pharmacy School of Guilin Medical University Guilin 541004 People's Republic of China
| | - Yan‐Yan Chen
- Pharmacy School of Guilin Medical University Guilin 541004 People's Republic of China
| | - Yan‐Li Xu
- Pharmacy School of Guilin Medical University Guilin 541004 People's Republic of China
- Key Laboratory of Agricultural Resources Chemistry and Biotechnology College of Chemistry and Food Science of Yulin Normal University Yulin 537000 People's Republic of China
| |
Collapse
|
17
|
Dai P, Xu L. Visible-Light-Induced Benzylic C—H Oxygenation Reaction Using Tetrabutylammonium Tribromide as the Catalyst. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Méndez A, Valdez-Camacho JR, Escalante J. Photooxidation of 2-( tert-Butyl)-3-Methyl-2,3,5,6,7,8-Hexahydroquinazolin-4( 1H)-one, an Example of Singlet Oxygen ene Reaction. Molecules 2020; 25:molecules25215008. [PMID: 33137910 PMCID: PMC7662339 DOI: 10.3390/molecules25215008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 11/29/2022] Open
Abstract
Singlet oxygen ene reactions produce 2-(tert-butyl)-4a-hydroperoxy-3-methyl-2,4a, 5,6,7,8-hexahydroquinazolin-4(3H)-one quantitatively during diffusion crystallization of 2-(tert-butyl)-3-methyl-2,3,5,6,7,8-hexahydroquinazolin-4(1H)-one in n-hexane/CH2Cl2 solvent mixture. To confirm this photo-oxidation, a 1H-NMR study in CDCl3 was performed with exposure to ambient conditions (light and oxygen), with neither additional reactants nor catalysts. A theoretical study at the B3LyP/6311++G** level using the QST2 method of locating transition states suggests a two-step mechanism where the intermediate, which unexpectedly did not come from the peroxide intermediate, has a low activation energy.
Collapse
|
19
|
Chen J, Jiang Z, Fukuzumi S, Nam W, Wang B. Artificial nonheme iron and manganese oxygenases for enantioselective olefin epoxidation and alkane hydroxylation reactions. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213443] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Capaldo L, Ertl M, Fagnoni M, Knör G, Ravelli D. Antimony-Oxo Porphyrins as Photocatalysts for Redox-Neutral C-H to C-C Bond Conversion. ACS Catal 2020; 10:9057-9064. [PMID: 33815891 PMCID: PMC8009479 DOI: 10.1021/acscatal.0c02250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/16/2020] [Indexed: 02/03/2023]
Abstract
The use of high-valent antimony-oxo porphyrins as visible-light photocatalysts operating via direct hydrogen atom transfer has been demonstrated. Computational analysis indicates that the triplet excited state of these complexes shows an oxyl radical behavior, while the SbV center remains in a high-valent oxidation state, serving uniquely to carry the oxo moiety and activate the coordinated ligands. This porphyrin-based system has been exploited upon irradiation to catalyze C-H to C-C bond conversion via the addition of hydrogen donors (ethers and aldehydes) onto Michael acceptors in a redox-neutral fashion without the need of any external oxidant. Laser flash photolysis experiments confirmed that the triplet excited state of the photocatalyst triggers the desired C-H cleavage.
Collapse
Affiliation(s)
- Luca Capaldo
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Martin Ertl
- Institute of Inorganic Chemistry, Johannes Kepler University Linz (JKU), Altenberger Strasse 69, 4040 Linz, Austria
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Günther Knör
- Institute of Inorganic Chemistry, Johannes Kepler University Linz (JKU), Altenberger Strasse 69, 4040 Linz, Austria
| | - Davide Ravelli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
21
|
Affiliation(s)
- Peili Zhang
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT‐KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology Dalian Liaoning 116024 China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT‐KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology Dalian Liaoning 116024 China
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology 10044 Stockholm Sweden
| |
Collapse
|
22
|
Mechanistic Insights into Visible Light-Induced Direct Hydroxylation of Benzene to Phenol with Air and Water over Pt-Modified WO3 Photocatalyst. Catalysts 2020. [DOI: 10.3390/catal10050557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Activation of C(sp2)-H in aromatic molecules such as benzene is one of the challenging reactions. The tungsten trioxide supported Pt nanoparticles (Pt-WO3) exhibited hydroxylation of benzene in the presence of air and H2O under visible-light (420 < λ < 540 nm) irradiation. The photocatalytic activities (yields and selectivity of phenol) were studied under several experimental conditions. Furthermore, investigations of mechanistic insight into hydroxylation of benzene have been carried out by analyses with apparent quantum yields (AQY), an H218O isotope-labeling experiment, kinetic isotope effects (KIE), electrochemical measurements and density functional theory (DFT) calculations. It was proposed that dissociation of the O–H bond in H2O is the rate-determining step. Furthermore, the substitution of the OH derived from H2O with H abstracted from benzene by photo-formed H2O2 indicated a mechanism involving a push-pull process for the hydroxylation of benzene into phenol.
Collapse
|