1
|
Xu R, Fu G, Ding W, Li Y, Yang G, Yu P, Li S, Liu P. Laser-Induced Co-Doped FePS 3 with Massively Phosphorus Sulfur Vacancies Nanosheet for Efficient and Highly Stable Electrocatalytic Oxygen Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501836. [PMID: 40184618 DOI: 10.1002/advs.202501836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/12/2025] [Indexed: 04/06/2025]
Abstract
Purposely optimizing material structure to reduce the energy change of the rate-determining step (RDS) for promoting oxygen evolution reaction (OER) catalytic performance is a major strategy to enhance the energy efficiency of electrocatalytic water splitting. Density functional theory (DFT) simulations indicate that creating a large number of defects on or inside the 2D FePS3 is very beneficial for its catalytic reaction of OER, especially when there are more defects, the structural diversity of the surface is more conducive to the adsorption and reaction of intermediates. In particular, when Co-doped FePS3 surfaces produce a large number of S and P defects and expose metallic Fe as active sites, its catalytic performance, especially the catalytic stability, is significantly enhanced. A facile and efficient laser-ablation-in-liquid method is then designed to combine Co with 2D layered crystal FePS3. Amazingly, the laser-induced (Fe0.53Co0.46)PS3 sample exhibits excellent OER performance, with an overpotential at 288 mV and a small Tafel slope of 58.3 mV dec-1. Moreover, (Fe0.53Co0.46)PS3 operates stably for 138 h at 10 mA cm-2 and 27 h at 100 mA cm-2, which shows that the stability of (Fe0.53Co0.46)PS3 far exceeds that of most of OER catalysts of Fe─Co system so far, and the comprehensive OER performance is in the first echelon of transition metal catalyst systems. This work proposes an in-depth understanding of the structural mechanism design of massive phosphorus sulfur vacancies by laser-induced manufacturing and will shed new light on promoting the stability of transition metal-based OER catalysts without any precious alternatives.
Collapse
Affiliation(s)
- Ruiqi Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science & Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Guoshuai Fu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science & Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Weimi Ding
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science & Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Yifan Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science & Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science & Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Peng Yu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science & Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Shuang Li
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Pu Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science & Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, P. R. China
| |
Collapse
|
2
|
Rajpure MM, Jadhav HS, Kim H. Layer interfacing strategy to derive free standing CoFe@PANI bifunctional electrocatalyst towards oxygen evolution reaction and methanol oxidation reaction. J Colloid Interface Sci 2024; 653:949-959. [PMID: 37776722 DOI: 10.1016/j.jcis.2023.09.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/08/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
Developing inexpensive, highly electrochemically active, and stable catalysts towards electrochemical studies remains challenge for researchers. In this regard, binder-free CoFe@PANI composite electrocatalyst is deposited on nickel foam (NF) substrate via successive electrodeposition of polyaniline (PANI) and CoFe-LDH at Room temperature (RT). As deposited binder-free CoFe@PANI electrocatalyst displays high electrocatalytic activity towards oxygen evolution reaction (OER) and methanol oxidation reaction (MOR) in alkaline media. In CoFe@PANI structure, interfacing of high-electron conducting PANI establishes strong interconnection with CoFe-LDH by tuning electronic structures, which accelerates the electrochemical performance towards OER and MOR. For OER, CoFe@PANI requires low overpotential (η10) of 237 mV to reach current density (Id) of 10 mA cm-2 and displays low Tafel slope value of 46 mV dec-1 in 1 M KOH solution. Also, it displayed specific Id of 120 mA cm-2, when it was tested for MOR in 1 M KOH with 0.5 M methanol solution. The superior electrocatalytic activity of CoFe@PANI is mainly ascribed to high electrochemical active surface area (ECSA), abundant active sites and fast electron transfer between electrocatalyst and electrode surface. Of note, the current work may open new era for design and development of non-precious highly active and stable hybrid electrocatalysts at RT for various applications.
Collapse
Affiliation(s)
- Manoj M Rajpure
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Harsharaj S Jadhav
- Centre for Materials for Electronics Technology (C-MET), Pune 411 008, India.
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| |
Collapse
|
3
|
Shooshtari Gugtapeh H, Rezaei M. One-Step Electrodeposition of a Mesoporous Ni/Co-Imidazole-Based Bimetal-Organic Framework on Pyramid-like NiSb with Abundant Coupling Interfaces as an Ultra-Stable Heterostructural Electrocatalyst for Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37436949 DOI: 10.1021/acsami.3c03021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The exploration of highly efficient metal-organic framework (MOF)-based electrocatalysts is a research topic of high significance owing to their potential applications in sustainable and clean energy production. Herein, a mesoporous MOF containing Ni and Co nodes along with 2-methylimidazole (Hmim) ligands has been directly grown on the surface of the pyramid-like NiSb through a convenient cathodic electrodeposition strategy and evaluated as the catalyst for water splitting catalysis. Tailoring catalytically active sites through porous well-arranging architecture and the coupled interface offers a catalyst with exquisite performance that displays ultra-low Tafel constant of 33 and 42 mV dec-1 toward the hydrogen evolution reaction and oxygen evolution reaction, sequentially, and also enhanced durability at high current densities over 150 h in a 1 M KOH medium. The success of the synthesized NiCo-MOF@NiSb@GB electrode is explained by the intimate contact between the NiCo-MOF and NiSb with well-tailored phase interfaces, the positive coupling effect between Ni and Co metal centers in the MOF, and the porous structure with abundant active sites toward electrocatalysis. Importantly, the present work provides a new technical reference for the electrochemical synthesis of heterostructural MOFs as a promising candidate for energy-related applications.
Collapse
Affiliation(s)
- Hamed Shooshtari Gugtapeh
- Department of Materials and Metallurgical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave., Tehran 15875-4413, Iran
| | - Milad Rezaei
- Department of Materials and Metallurgical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave., Tehran 15875-4413, Iran
| |
Collapse
|
4
|
Karmakar A, Jayan R, Das A, Kalloorkal A, Islam MM, Kundu S. Regulating Surface Charge by Embedding Ru Nanoparticles over 2D Hydroxides toward Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37243613 DOI: 10.1021/acsami.3c05512] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Exploring highly active and earth-abundant electrocatalysts for the oxygen evolution reaction (OER) is considered one of the prime prerequisites for generating green hydrogen. Herein, a competent microwave-assisted decoration of Ru nanoparticles (NPs) over the bimetallic layered double hydroxide (LDH) material is proposed. The same has been used as an OER catalyst in a 1 M KOH solution. The catalyst shows an interesting Ru NP loading dependency toward the OER, and a concentration-dependent volcanic relationship between electronic charge and thermoneutral current densities has been observed. This volcanic relation shows that with an optimum concentration of Ru NPs, the catalyst could effectively catalyze the OER by obeying the Sabatier principle of ion adsorption. The optimized Ru@CoFe-LDH(3%) demands an overpotential value of only 249 mV to drive a current density value of 10 mA/cm2 with the highest TOF value of 14.4 s-1 as compared to similar CoFe-LDH-based materials. In situ impedance experiments and DFT studies demonstrated that incorporating the Ru NPs boosts the intrinsic OER activity of the CoFe-LDH on account of sufficient activated redox reactivities for both Co and lattice oxygen of the CoFe-LDH. As a result, compared with the pristine CoFe-LDH, the current density of Ru@CoFe-LDH(3%) at 1.55 V vs RHE normalized by ECSA increased by 86.58%. First-principles DFT analysis shows that the optimized Ru@CoFe-LDH(3%) possesses a lower d-band center that indicates weaker and more optimal binding characteristics for OER intermediates, improving the overall OER performance. Overall, this report displays an excellent correlation between the decorated concentration of NPs over the LDH surface which can tune the OER activity as verified by both experimental and theoretical calculations.
Collapse
Affiliation(s)
- Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Rahul Jayan
- Department of Mechanical Engineering, Wayne State University, Detroit 48201, Michigan, United States
| | - Ankit Das
- Center for Education (CFE), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Althaf Kalloorkal
- Center for Education (CFE), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Md Mahbubul Islam
- Department of Mechanical Engineering, Wayne State University, Detroit 48201, Michigan, United States
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
5
|
Chen Z, Dong S, Wang M, Hu Z, Chen H, Han Y, Yuan D. Construction of 3D Hierarchical Co 3O 4@CoFe-LDH Heterostructures with Effective Interfacial Charge Redistribution for Rechargeable Liquid/Solid Zn-Air Batteries. Inorg Chem 2023; 62:2826-2837. [PMID: 36710494 DOI: 10.1021/acs.inorgchem.2c04154] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Constructing three-dimensional (3D) hierarchical heterostructures is an appealing but challenging strategy to improve the performance of catalysts for electrical energy devices. Here, an efficient and robust flexible self-supporting catalyst, interface coupling of ultrathin CoFe-LDH nanosheets and Co3O4 nanowire arrays on the carbon cloth (CC/Co3O4@CoFe-LDH), was proposed for boosting oxygen evolution reaction (OER) in rechargeable liquid/solid Zn-air batteries (ZABs). The strong interfacial interaction between the CoFe-LDH and Co3O4 heterostructures stimulated the charge redistribution in their coupling regions, which improved the electron conductivity and optimized the adsorption free energy of OER intermediates, ultimately boosting the intrinsic OER performance. Besides, the 3D hierarchical nanoarray structure facilitated the exposure of catalytically active centers and rapid electron/mass transfer during the OER process. As such, the CC/Co3O4@CoFe-LDH catalyst achieved excellent OER catalytic activity in alkaline medium, with a small overpotential of 237 mV at 10 mA cm-2, a low Tafel slope of 35.43 mV dec-1, and long-term durability of up to 48 h, significantly outperforming the commercial RuO2 catalyst. More impressively, the liquid and flexible solid-state ZABs assembled by the CC/Co3O4@CoFe-LDH hybrid catalyst as the OER catalyst presented a stable open circuit voltage, large power density, superb cycling life, and satisfactory flexibility, indicating great potential applications in energy technology. This work provides a good guidance for the development of advanced electrocatalysts with heterostructures and an in-depth understanding of electronic modulation at the heterogeneous interface.
Collapse
Affiliation(s)
- Zihao Chen
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071 Shandong, P. R. China
| | - Senjie Dong
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071 Shandong, P. R. China
| | - Minghui Wang
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071 Shandong, P. R. China
| | - Zunpeng Hu
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071 Shandong, P. R. China
| | - Huiling Chen
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071 Shandong, P. R. China
| | - Ye Han
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266071 Shandong, P. R. China
| | - Ding Yuan
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071 Shandong, P. R. China
| |
Collapse
|
6
|
Ma J, Liu L, Chen Z, Wang M, Wu H, Wang H, Yuan D, Ning X. Interfacial Engineering of Leaf-like Bimetallic MOF-Based Co@NC Nanoarrays Coupled with Ultrathin CoFe-LDH Nanosheets for Rechargeable and Flexible Zn-Air Batteries. Polymers (Basel) 2023; 15:polym15030734. [PMID: 36772037 PMCID: PMC9919106 DOI: 10.3390/polym15030734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Exploring high-efficiency, low-cost, and long-life bifunctional self-supporting electrocatalysts is of great significance for the practical application of advanced rechargeable Zn-air batteries (ZABs), especially flexible solid-state ZABs. Herein, ultrathin CoFe-layered double hydroxide (CoFe-LDH) nanosheets are strongly coupled on the surface of leaf-like bimetallic metal-organic frameworks (MOFs)-derived hybrid carbon (Co@NC) nanoflake nanoarrays supported by carbon cloth (CC) via a facile and scalable method for rechargeable and flexible ZABs. This interfacial engineering for CoFe-LDHs on Co@NC improves the electronic conductivity of CoFe-LDH nanosheets as well as achieves the balance of oxygen evolution reduction (OER) and oxygen reduction reaction (ORR) activity. The unique three-dimensional (3D) open interconnected hierarchical structure facilitates the transport of substances during the electrochemical process while ensuring adequate exposure of OER/ORR active centers. When applied as an additive-free air cathode in rechargeable liquid ZABs, CC/Co@NC/CoFe-LDH-700 demonstrates high open-circuit potential of 1.47 V, maximum power density of 129.3 mW cm-2, and satisfactory specific capacity of 710.7 mAh g-1Zn. Further, the flexible all-solid-state ZAB assembled by CC/Co@NC/CoFe-LDH-700 displays gratifying mechanical flexibility and stable cycling performance over 40 h. More significantly, the series-connected flexible ZAB is further verified as a chain power supply for LED strips and performs well throughout the bending process, showing great application prospects in portable and wearable electronics. This work sheds new light on the design of high-performance self-supporting non-precious metal bifunctional electrocatalysts for OER/ORR and air cathodes for rechargeable ZABs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ding Yuan
- Correspondence: (D.Y.); (X.N.); Tel.: +86-532-85953572 (X.N.)
| | - Xin Ning
- Correspondence: (D.Y.); (X.N.); Tel.: +86-532-85953572 (X.N.)
| |
Collapse
|
7
|
Shankar Naik S, Theerthagiri J, Nogueira FS, Lee SJ, Min A, Kim GA, Maia G, Pinto LM, Choi MY. Dual-Cation-Coordinated CoFe-Layered Double-Hydroxide Nanosheets Using the Pulsed Laser Ablation Technique for Efficient Electrochemical Water Splitting: Mechanistic Screening by In Situ/Operando Raman and Density Functional Theory Calculations. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Shreyanka Shankar Naik
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju52828, South Korea
| | - Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju52828, South Korea
| | - Fabio Sobral Nogueira
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, UFMS, Campo Grande79074-460, Mato Grosso do Sul, Brazil
| | - Seung Jun Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju52828, South Korea
| | - Ahreum Min
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju52828, South Korea
| | - Gyeong-Ah Kim
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju52828, South Korea
| | - Gilberto Maia
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, UFMS, Campo Grande79074-460, Mato Grosso do Sul, Brazil
| | - Leandro M.C. Pinto
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, UFMS, Campo Grande79074-460, Mato Grosso do Sul, Brazil
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju52828, South Korea
| |
Collapse
|
8
|
Unique three-dimensional heterostructure of MoS2@Co-MOF decorated with Co-Al layered double hydroxide: An effective synergistic alkaline hydrogen evolution electrocatalyst. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Mao X, Kang Shen P. Interface engineering of NiMoSx heterostructure nanorods for efficient oxygen evolution reaction. J Colloid Interface Sci 2022; 628:513-523. [DOI: 10.1016/j.jcis.2022.07.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/16/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
|
10
|
Recent advances of two-dimensional CoFe layered-double-hydroxides for electrocatalytic water oxidation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Sadeghi E, Peighambardoust NS, Aydemir U. Tailoring the Morphology of Cost-Effective Vanadium Diboride Through Cobalt Substitution for Highly Efficient Alkaline Water Oxidation. Inorg Chem 2021; 60:19457-19466. [PMID: 34855373 DOI: 10.1021/acs.inorgchem.1c03374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Design and development of efficient, economical, and durable electrocatalysts for oxygen evolution reaction (OER) are of key importance for the realization of electrocatalytic water splitting. To date, VB2 and its derivatives have not been considered as electrocatalysts for water oxidation. Herein, we developed a series of electrocatalysts with a formal composition of V1-xCoxB2 (x = 0, 0.05, 0.1, and 0.2) and employed them in an oxygen-evolving reaction. The incorporation of Co into the VB2 structure caused a dramatic transformation in the morphology, resulting in a super low overpotential of 200 mV at 10 mA cm-2 for V0.9Co0.1B2 and displaying much greater performance compared to the noble-metal catalyst RuO2 (290 mV). The longevity of the best-performing sample was assessed through the exposure to the current density of 10 mA cm-2, showing relative durability after 12 h under 1 M KOH conditions. The Faradaic efficiency tests corroborated the initiation of OER at 1.45 V (vs RHE) and suggested a potential region of 1.50-1.55 V (vs RHE) as the practical OER region. The facile electron transfer between metal(s)-metalloid, high specific surface area, and availability of active oxy-hydroxy species on the surface were identified as the major contributors to this superior OER performance.
Collapse
Affiliation(s)
- Ebrahim Sadeghi
- Koç University Boron and Advanced Materials Application and Research Center (KUBAM), Sariyer, Istanbul 34450, Turkey.,Graduate School of Sciences and Engineering, Koç University, Sariyer, Istanbul 34450, Turkey
| | - Naeimeh Sadat Peighambardoust
- Koç University Boron and Advanced Materials Application and Research Center (KUBAM), Sariyer, Istanbul 34450, Turkey
| | - Umut Aydemir
- Koç University Boron and Advanced Materials Application and Research Center (KUBAM), Sariyer, Istanbul 34450, Turkey.,Department of Chemistry, Koç University, Sariyer, Istanbul 34450, Turkey
| |
Collapse
|
12
|
Liu Y, Li Y, Wu Q, Su Z, Wang B, Chen Y, Wang S. Hollow CoP/FeP 4 Heterostructural Nanorods Interwoven by CNT as a Highly Efficient Electrocatalyst for Oxygen Evolution Reactions. NANOMATERIALS 2021; 11:nano11061450. [PMID: 34070770 PMCID: PMC8227064 DOI: 10.3390/nano11061450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022]
Abstract
Electrolysis of water to produce hydrogen is crucial for developing sustainable clean energy and protecting the environment. However, because of the multi-electron transfer in the oxygen evolution reaction (OER) process, the kinetics of the reaction is seriously hindered. To address this issue, we designed and synthesized hollow CoP/FeP4 heterostructural nanorods interwoven by carbon nanotubes (CoP/FeP4@CNT) via a hydrothermal reaction and a phosphorization process. The CoP/FeP4@CNT hybrid catalyst delivers prominent OER electrochemical performances: it displays a substantially smaller Tafel slope of 48.0 mV dec−1 and a lower overpotential of 301 mV at 10 mA cm−2, compared with an RuO2 commercial catalyst; it also shows good stability over 20 h. The outstanding OER property is mainly attributed to the synergistic coupling between its unique CNT-interwoven hollow nanorod structure and the CoP/FeP4 heterojunction, which can not only guarantee high conductivity and rich active sites, but also greatly facilitate the electron transfer, ion diffusion, and O2 gas release and significantly enhance its electrocatalytic activity. This work offers a facile method to develop transition metal-based phosphide heterostructure electrocatalysts with a unique hierarchical nanostructure for high performance water oxidation.
Collapse
Affiliation(s)
- Yanfang Liu
- College of Science, Institute of Oxygen Supply, Tibet University, Lhasa 850000, China; (Y.L.); (Y.L.); (Q.W.)
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Yong Li
- College of Science, Institute of Oxygen Supply, Tibet University, Lhasa 850000, China; (Y.L.); (Y.L.); (Q.W.)
| | - Qi Wu
- College of Science, Institute of Oxygen Supply, Tibet University, Lhasa 850000, China; (Y.L.); (Y.L.); (Q.W.)
| | - Zhe Su
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Bin Wang
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
- Correspondence: (B.W.); (Y.C.); (S.W.)
| | - Yuanfu Chen
- College of Science, Institute of Oxygen Supply, Tibet University, Lhasa 850000, China; (Y.L.); (Y.L.); (Q.W.)
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
- Correspondence: (B.W.); (Y.C.); (S.W.)
| | - Shifeng Wang
- College of Science, Institute of Oxygen Supply, Tibet University, Lhasa 850000, China; (Y.L.); (Y.L.); (Q.W.)
- Key Laboratory of Cosmic Rays, Tibet University, Ministry of Education, Lhasa 850000, China
- Correspondence: (B.W.); (Y.C.); (S.W.)
| |
Collapse
|
13
|
Li W, Feng B, Yi L, Li J, Hu W. Highly Efficient Alkaline Water Splitting with Ru-Doped Co-V Layered Double Hydroxide Nanosheets as a Bifunctional Electrocatalyst. CHEMSUSCHEM 2021; 14:730-737. [PMID: 33225588 DOI: 10.1002/cssc.202002509] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Active electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are decisive for achieving efficient energy conversion from electricity to hydrogen fuel through water electrolysis. In this study, tremella-like Ru-doped Co-V layered double hydroxide nanosheets on Ni Foam (Ru-CoV-LDH@NF) was fabricated by a one-pot solvothermal reaction. As-prepared Ru-CoV-LDH@NF, with a nominal Ru loading of around 51.6 μg cm-2 exhibits excellent bifunctional catalytic activity towards HER and OER in alkaline media. To accomplish a current density of 10 mA cm-2 , it demands 32 mV and 230 mV overpotentials for HER and OER, respectively. The alkali electrolyzer utilizing Ru-CoV-LDH/NF as bifunctional electrocatalyst affords 10 mA cm-2 electrolytic current density at an extremely low cell voltage of 1.50 V, showing excellent performance compared to a Pt/C-RuO2 -based electrolyzer and many other bifunctional electrocatalyst-based ones. The incorporation of Ru changes the morphology of the resultant nanosheets to offer high electrochemical surface areas for electrocatalysis; at the same time, it significantly boosts the intrinsic HER/OER electrocatalytic activity. For HER, the energy barrier of the Volmer step is efficiently reduced upon Ru doping, whereas the Ru dopants optimize the absorption strength of *O intermediates to facilitate the OER process. This work offers a feasible means to optimize the Co-based hydroxide materials for improved electrocatalysis in overall water splitting.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, 2 Tiansheng, Beibei, Chongqing, 400715, P. R. China
- School of Materials and Energy, Southwest University, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, 2 Tiansheng, Beibei, Chongqing, 400715, P. R. China
| | - Bomin Feng
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, 2 Tiansheng, Beibei, Chongqing, 400715, P. R. China
- School of Materials and Energy, Southwest University, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, 2 Tiansheng, Beibei, Chongqing, 400715, P. R. China
| | - Lingya Yi
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, 2 Tiansheng, Beibei, Chongqing, 400715, P. R. China
- School of Materials and Energy, Southwest University, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, 2 Tiansheng, Beibei, Chongqing, 400715, P. R. China
| | - Junying Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, 2 Tiansheng, Beibei, Chongqing, 400715, P. R. China
- School of Materials and Energy, Southwest University, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, 2 Tiansheng, Beibei, Chongqing, 400715, P. R. China
| | - Weihua Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, 2 Tiansheng, Beibei, Chongqing, 400715, P. R. China
- School of Materials and Energy, Southwest University, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, 2 Tiansheng, Beibei, Chongqing, 400715, P. R. China
| |
Collapse
|
14
|
Li G, Zheng K, Li W, He Y, Xu C. Ultralow Ru-Induced Bimetal Electrocatalysts with a Ru-Enriched and Mixed-Valence Surface Anchored on a Hollow Carbon Matrix for Oxygen Reduction and Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51437-51447. [PMID: 33152235 DOI: 10.1021/acsami.0c14521] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rational design of trifunctional electrocatalysts with robust efficiency used for oxygen reduction, oxygen evolution, and hydrogen evolution reactions (ORR, OER, and HER) is of significance to renewable energy conversion techniques, which remains a challenging issue. This study integrates dominant Co/Co3O4 with a small fraction of RuO2 and the CoRu alloy anchored on a hollow carbon matrix, originating from the novel Ru-doped hollow metal-organic framework (MOF) precursor, which is synthesized via tannic etching and ion exchange. Notably, the introduced ultralow Ru (1.28 wt %) not only generates new Ru-based species but also induces a Ru-enriched surface with abundant oxygen vacancies. Moreover, a suitable balance among different valencies of Co or Ru can be tuned by oxidation time, resulting in preferable Co2+ and Ru4+ species. Triggered by these unparalleled surface properties along with good conductivity, hollow structure, and the synergistic effect of multiple active sites, the resulting CoRu-O/A@hollow nitrogen-doped carbon (HNC) shows robust catalytic performance for ORR/OER/HER in an alkaline electrolyte. Typically, it exhibits a potential gap of 0.662 V for OER/ORR and enables an alkaline water electrolyzer with a cell voltage of 1.558 V at 10 mA cm-2. This work would serve as guidance for well construction of transition-metal-based trifunctional electrocatalysts by the MOF-assisted strategy or the modulation effects of low-content Ru.
Collapse
Affiliation(s)
- Guoning Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Chemical Engineering Research Center, Tianjin University, Tianjin 300072, China
| | - Kaitian Zheng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Chemical Engineering Research Center, Tianjin University, Tianjin 300072, China
| | - Weisong Li
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou 221116, China
| | - Yongchao He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Chemical Engineering Research Center, Tianjin University, Tianjin 300072, China
| | - Chunjian Xu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Chemical Engineering Research Center, Tianjin University, Tianjin 300072, China
| |
Collapse
|
15
|
Du Y, Lu Y, Zhang H, Nie Z, Sun Z, Han C, Li R, Zhu J. Facile Synthesis of Three‐dimensional Hierarchical Ni
3
S
2
@CoAl‐LDHs Nanosheet Arrays and Their Efficient Hydrogen Evolution. ChemCatChem 2020. [DOI: 10.1002/cctc.202001239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yuhang Du
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 P.R. China
| | - Yufei Lu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 P.R. China
| | - Hongjian Zhang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 P.R. China
| | - Zhentao Nie
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 P.R. China
| | - Zhicheng Sun
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 P.R. China
| | - Congying Han
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 P.R. China
| | - Ruizi Li
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 P.R. China
| | - Jixin Zhu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 P.R. China
| |
Collapse
|