1
|
Peng B, Zhang K, Sun Y, Han B, He M. Role of Water in Green Carbon Science. J Am Chem Soc 2025; 147:13083-13100. [PMID: 40214760 DOI: 10.1021/jacs.5c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Within the context of green chemistry, the concept of green carbon science emphasizes carbon balance and recycling to address the challenge of achieving carbon neutrality. The fundamental processes in this field are oxidation and reduction, which often involve simple molecules such as CO2, CO, CH4, CHx, and H2O. Water plays a critical role in nearly all oxidation-reduction processes, and thus, it is a central focus of research in green carbon science. Water can act as a direct source of dihydrogen in reduction reactions or participate in oxidation reactions, frequently involving O-O coupling to produce hydrogen peroxide or dioxygen. At the atomic level, this coupling involves the statistically unfavorable proximity of two atoms, requiring optimization through a catalytic process influenced by two types of factors, as described by the authors. Extrinsic factors are related to geometrical and electronic criteria associated with the catalytic metal, involving its d-orbitals (or bands in the case of zerovalent metals and electrodes). Intrinsic factors are related to the coupling of oxygen atoms via their p-orbitals. At the mesoscopic or microscopic scale, the reaction medium typically consists of mixtures of lipophilic and hydrophilic phases with water, which may exist under supercritical conditions or as suspensions of microdroplets. These reactions predominantly occur at phase interfaces. A comprehensive understanding of the phenomena across these scales could facilitate improvements and even lead to the development of novel conversion processes.
Collapse
Affiliation(s)
- Bo Peng
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Kun Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuhan Sun
- Shanxi Research Institute of Huairou Lab, Taiyuan 030032, China
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Buxing Han
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Mingyuan He
- State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Research Institute of Petrochem Processing, SINOPEC, Beijing 100083, China
- Institute of Eco-Chongming, Shanghai 202162, China
| |
Collapse
|
2
|
Chen JN, Pan ZH, Qiu QH, Wang C, Long LS, Zheng LS, Kong XJ. Soluble Gd 6Cu 24 clusters: effective molecular electrocatalysts for water oxidation. Chem Sci 2024; 15:511-515. [PMID: 38179510 PMCID: PMC10762933 DOI: 10.1039/d3sc05849b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
The water oxidation half reaction in water splitting for hydrogen production is extremely rate-limiting. This study reports the synthesis of two heterometallic clusters (Gd6Cu24-IM and Gd6Cu24-AC) for application as efficient water oxidation catalysts. Interestingly, the maximum turnover frequency of Gd6Cu24-IM in an NaAc solution of a weak acid (pH 6) was 319 s-1. The trimetallic catalytic site, H2O-GdIIICuII2-H2O, underwent two consecutive two-electron two-proton coupled transfer processes to form high-valent GdIII-O-O-CuIII2 intermediates. Furthermore, the O-O bond was formed via intramolecular interactions between the CuIII and GdIII centers. The results of this study revealed that synergistic catalytic water oxidation between polymetallic sites can be an effective strategy for regulating O-O bond formation.
Collapse
Affiliation(s)
- Jia-Nan Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Zhong-Hua Pan
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Qi-Hao Qiu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Cheng Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| |
Collapse
|
3
|
Tao C, Jiang Y, Ding Y, Jia B, Liu R, Li P, Yang W, Xia L, Sun L, Zhang B. Surface Reconstruction and Passivation of BiVO 4 Photoanodes Depending on the "Structure Breaker" Cs . JACS AU 2023; 3:1851-1863. [PMID: 37502161 PMCID: PMC10369408 DOI: 10.1021/jacsau.3c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 07/29/2023]
Abstract
Monoclinic BiVO4 is one of the most promising photoanode materials for solar water splitting. The photoelectrochemical performance of a BiVO4 photoanode could be significantly influenced by the noncovalent interactions of redox-inert metal cations at the photoanode-electrolyte interfaces, but this point has not been well investigated. In this work, we studied the Cs+-dependent surface reconstruction and passivation of BiVO4 photoanodes. Owing to the "structure breaker" nature of Cs+, the Cs+ at the BiVO4 photoanode-electrolyte interfaces participated in BiVO4 surface photocorrosion to form a Cs+-doped bismuth vanadium oxide amorphous thin layer, which inhibited the continuous photocorrosion of BiVO4 and promoted surface charge transfer and water oxidation. The resulting cocatalyst-free BiVO4 photoanodes achieved 3.3 mA cm-2 photocurrent for water oxidation. With the modification of FeOOH catalysts, the photocurrent at 1.23 VRHE reached 5.1 mA cm-2, and a steady photocurrent of 3.0 mA cm-2 at 0.8 VRHE was maintained for 30 h. This work provides new insights into the understanding of Cs+ chemistry and the effects of redox-inert cations at the electrode-electrolyte interfaces.
Collapse
Affiliation(s)
- Chen Tao
- College
of Chemistry, Liaoning University, Shenyang 110036, Liaoning, China
| | - Yi Jiang
- College
of Chemistry, Liaoning University, Shenyang 110036, Liaoning, China
| | - Yunxuan Ding
- Center
of Artificial Photosynthesis for Solar Fuels and Department of Chemistry,
School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute
of Natural Sciences, Westlake Institute
for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Bingquan Jia
- Center
of Artificial Photosynthesis for Solar Fuels and Department of Chemistry,
School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute
of Natural Sciences, Westlake Institute
for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Ruitong Liu
- Center
of Artificial Photosynthesis for Solar Fuels and Department of Chemistry,
School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Peifeng Li
- Center
of Artificial Photosynthesis for Solar Fuels and Department of Chemistry,
School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Wenxing Yang
- Center
of Artificial Photosynthesis for Solar Fuels and Department of Chemistry,
School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute
of Natural Sciences, Westlake Institute
for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Lixin Xia
- College
of Chemistry, Liaoning University, Shenyang 110036, Liaoning, China
| | - Licheng Sun
- Center
of Artificial Photosynthesis for Solar Fuels and Department of Chemistry,
School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute
of Natural Sciences, Westlake Institute
for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Biaobiao Zhang
- Center
of Artificial Photosynthesis for Solar Fuels and Department of Chemistry,
School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute
of Natural Sciences, Westlake Institute
for Advanced Study, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
4
|
Lv J, Xie J, Mohamed AGA, Zhang X, Feng Y, Jiao L, Zhou E, Yuan D, Wang Y. Solar utilization beyond photosynthesis. Nat Rev Chem 2022; 7:91-105. [PMID: 37117911 DOI: 10.1038/s41570-022-00448-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Natural photosynthesis is an efficient biochemical process which converts solar energy into energy-rich carbohydrates. By understanding the key photoelectrochemical processes and mechanisms that underpin natural photosynthesis, advanced solar utilization technologies have been developed that may be used to provide sustainable energy to help address climate change. The processes of light harvesting, catalysis and energy storage in natural photosynthesis have inspired photovoltaics, photoelectrocatalysis and photo-rechargeable battery technologies. In this Review, we describe how advanced solar utilization technologies have drawn inspiration from natural photosynthesis, to find sustainable solutions to the challenges faced by modern society. We summarize the uses of advanced solar utilization technologies, such as converting solar energy to electrical and chemical energy, electrochemical storage and conversion, and associated thermal tandem technologies. Both the foundational mechanisms and typical materials and devices are reported. Finally, potential future solar utilization technologies are presented that may mimic, and even outperform, natural photosynthesis.
Collapse
|
5
|
Xu B, Chen Y, Yao R, Chen C, Zhang C. Redox‐Induced Structural Change in Artificial Heterometallic‐Oxide Cluster Mimicking the Photosynthetic Oxygen‐Evolving Center. Chemistry 2022; 28:e202201456. [DOI: 10.1002/chem.202201456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Boran Xu
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Yang Chen
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Ruoqing Yao
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Changhui Chen
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| | - Chunxi Zhang
- Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
- University of Chinese Academy of Sciences 100049 Beijing P. R. China
| |
Collapse
|
6
|
Chen Y, Xu B, Yao R, Chen C, Zhang C. Mimicking the Oxygen-Evolving Center in Photosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:929532. [PMID: 35874004 PMCID: PMC9302449 DOI: 10.3389/fpls.2022.929532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The oxygen-evolving center (OEC) in photosystem II (PSII) of oxygenic photosynthetic organisms is a unique heterometallic-oxide Mn4CaO5-cluster that catalyzes water splitting into electrons, protons, and molecular oxygen through a five-state cycle (Sn, n = 0 ~ 4). It serves as the blueprint for the developing of the man-made water-splitting catalysts to generate solar fuel in artificial photosynthesis. Understanding the structure-function relationship of this natural catalyst is a great challenge and a long-standing issue, which is severely restricted by the lack of a precise chemical model for this heterometallic-oxide cluster. However, it is a great challenge for chemists to precisely mimic the OEC in a laboratory. Recently, significant advances have been achieved and a series of artificial Mn4XO4-clusters (X = Ca/Y/Gd) have been reported, which closely mimic both the geometric structure and the electronic structure, as well as the redox property of the OEC. These new advances provide a structurally well-defined molecular platform to study the structure-function relationship of the OEC and shed new light on the design of efficient catalysts for the water-splitting reaction in artificial photosynthesis.
Collapse
Affiliation(s)
- Yang Chen
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Boran Xu
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruoqing Yao
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changhui Chen
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Chunxi Zhang
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Abstract
The oxygen-evolving center (OEC) in photosystem II (PSII) of plants, algae and cyanobacteria is a unique natural catalyst that splits water into electrons, protons and dioxygen. The crystallographic studies of PSII have revealed that the OEC is an asymmetric Mn4CaO5-cluster. The understanding of the structure-function relationship of this natural Mn4CaO5-cluster is impeded mainly due to the complexity of the protein environment and lack of a rational chemical model as a reference. Although it has been a great challenge for chemists to synthesize the OEC in the laboratory, significant advances have been achieved recently. Different artificial complexes have been reported, especially a series of artificial Mn4CaO4-clusters that closely mimic both the geometric and electronic structures of the OEC in PSII, which provides a structurally well-defined chemical model to investigate the structure-function relationship of the natural Mn4CaO5-cluster. The deep investigations on this artificial Mn4CaO4-cluster could provide new insights into the mechanism of the water-splitting reaction in natural photosynthesis and may help the development of efficient catalysts for the water-splitting reaction in artificial photosynthesis.
Collapse
|