1
|
Xiao J, Xiao Z, Hu J, Gao X, Asim M, Pan L, Shi C, Zhang X, Zou JJ. Rational Design of Alkynyl-Based Linear Donor−π–Acceptor Conjugated Polymers with Accelerated Exciton Dissociation for Photocatalysis. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jie Xiao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Ziheng Xiao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Jinghui Hu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaokai Gao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Muhammad Asim
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| |
Collapse
|
2
|
Wu Z, Li X, Zhao Y, Li Y, Wei K, Shi H, Zhang T, Huang H, Liu Y, Kang Z. Organic Semiconductor/Carbon Dot Composites for Highly Efficient Hydrogen and Hydrogen Peroxide Coproduction from Water Photosplitting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60561-60570. [PMID: 34878264 DOI: 10.1021/acsami.1c14735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Coproduction of hydrogen (H2) and hydrogen peroxide (H2O2) from water splitting is one of the most promising ways to alleviate the energy crisis and environmental pollution. Here, we first show the synthesis and photocatalytic property of an organic semiconductor (DAnTMS compound) from 9,10-dibromoanthracene and trimethylsilylacetylene. Then, a metal-free photocatalyst of a DAnTMS/carbon dot (DAnTMS/CD) composite was designed and fabricated, which achieved the efficient photocatalytic production of H2 and H2O2 without usage of any organic solvents and sacrificial agents. Under visible light, the DAnTMS/CD composite could produce H2O2 with a maximum rate of 396.7 μmol g-1 h-1 and H2 with a maximum rate of 265.0 μmol g-1 h-1 in pure water. Transient photovoltage tests showed that CDs changed the interfacial electron transfer kinetics and served as the active site for highly efficient H2 evolution. This work provided a deep insight into the function of CDs in regulating the catalytic property of organic photocatalysts.
Collapse
Affiliation(s)
- Zhenyu Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Xinke Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Yu Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Yi Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Kaiqiang Wei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Hong Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Tianyang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| |
Collapse
|
3
|
Zheng D, Yang L, Chen W, Fang Y, Wang X. Coating Polymeric Carbon Nitride on Conductive Carbon Cloth to Promote Charge Separation for Photocatalytic Water Splitting. CHEMSUSCHEM 2021; 14:3821-3824. [PMID: 34291587 DOI: 10.1002/cssc.202101346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The use of polymeric carbon nitride (PCN) for photoredox catalysis is innovating and promoting toward sustainable energy economy. One of the drawbacks of this metal-free photocatalyst is its insufficient charge separation and transfer. Herein, a metal-free system was achieved by anchoring PCN on conductive carbon cloth (CCC). CCC in this system facilitated the charge separation and transport of the photoexcitation charges when PCN films were illuminated. Both photoelectrochemical water oxidation and photocatalytic overall water splitting were achieved, and the performances were improved two-fold with respect to the powder PCN.
Collapse
Affiliation(s)
- Dandan Zheng
- College of Environment & safety engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Lele Yang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Wenwen Chen
- College of Environment & safety engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|