1
|
Chen X, Wang X, Pang Y, Bao G, Jiang J, Yang P, Chen Y, Rao T, Liao W. Printed Electronics Based on 2D Material Inks: Preparation, Properties, and Applications toward Memristors. SMALL METHODS 2023; 7:e2201156. [PMID: 36610015 DOI: 10.1002/smtd.202201156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Printed electronics, which fabricate electrical components and circuits on various substrates by leveraging functional inks and advanced printing technologies, have recently attracted tremendous attention due to their capability of large-scale, high-speed, and cost-effective manufacturing and also their great potential in flexible and wearable devices. To further achieve multifunctional, practical, and commercial applications, various printing technologies toward smarter pattern-design, higher resolution, greater production flexibility, and novel ink formulations toward multi-functionalities and high quality have been insensitively investigated. 2D materials, possessing atomically thin thickness, unique properties and excellent solution-processable ability, hold great potential for high-quality inks. Besides, the great variety of 2D materials ranging from metals, semiconductors to insulators offers great freedom to formulate versatile inks to construct various printed electronics. Here, a detailed review of the progress on 2D material inks formulation and its printed applications has been provided, specifically with an emphasis on emerging printed memristors. Finally, the challenges facing the field and prospects of 2D material inks and printed electronics are discussed.
Collapse
Affiliation(s)
- Xiaopei Chen
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiongfeng Wang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yudong Pang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guocheng Bao
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jie Jiang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Peng Yang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
- College of Integrated Circuits and Optoelectronic Chips, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yuankang Chen
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tingke Rao
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wugang Liao
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
2
|
van Hazendonk L, Pinto AM, Arapov K, Pillai N, Beurskens MRC, Teunissen JP, Sneck A, Smolander M, Rentrop CHA, Bouten PCP, Friedrich H. Printed Stretchable Graphene Conductors for Wearable Technology. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:8031-8042. [PMID: 36117880 PMCID: PMC9477090 DOI: 10.1021/acs.chemmater.2c02007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Skin-compatible printed stretchable conductors that combine a low gauge factor with a high durability over many strain cycles are still a great challenge. Here, a graphene nanoplatelet-based colloidal ink utilizing a skin-compatible thermoplastic polyurethane (TPU) binder with adjustable rheology is developed. Stretchable conductors that remain conductive even under 100% strain and demonstrate high fatigue resistance to cyclic strains of 20-50% are realized via printing on TPU. The sheet resistances of these conductors after drying at 120 °C are as low as 34 Ω □-1 mil-1. Furthermore, photonic annealing at several energy levels is used to decrease the sheet resistance to <10 Ω □-1 mil-1, with stretchability and fatigue resistance being preserved and tunable. The high conductivity, stretchability, and cyclic stability of printed tracks having excellent feature definition in combination with scalable ink production and adjustable rheology bring the high-volume manufacturing of stretchable wearables into scope.
Collapse
Affiliation(s)
- Laura
S. van Hazendonk
- Laboratory
of Physical Chemistry and Center for Multiscale Electron Microscopy,
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Artur M. Pinto
- Laboratory
of Physical Chemistry and Center for Multiscale Electron Microscopy,
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- LEPABE, Faculdade
de Engenharia, Universidade do Porto, 4200-180 Porto, Portugal
| | - Kirill Arapov
- Laboratory
of Physical Chemistry and Center for Multiscale Electron Microscopy,
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Nikhil Pillai
- Pulseforge, 400 Parker Drive, Suite 1110, Austin, Texas 78728, United States
| | - Michiel R. C. Beurskens
- Laboratory
of Physical Chemistry and Center for Multiscale Electron Microscopy,
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | | | - Asko Sneck
- VTT
Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland
| | - Maria Smolander
- VTT
Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland
| | | | - Piet C. P. Bouten
- Holst
Centre - TNO, High Tech
Campus 31, 5656AE Eindhoven, The Netherlands
| | - Heiner Friedrich
- Laboratory
of Physical Chemistry and Center for Multiscale Electron Microscopy,
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
3
|
Hassan K, Tung TT, Yap PL, Rastin H, Stanley N, Nine MJ, Losic D. Fractal Design for Advancing the Performance of Chemoresistive Sensors. ACS Sens 2021; 6:3685-3695. [PMID: 34644058 DOI: 10.1021/acssensors.1c01449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The rapid advancement of internet of things (IoT)-enabled applications along with connected automation in sensing technologies is the heart of future intelligent systems. The probable applications have significant implications, from chemical process monitoring to agriculture, mining, space, wearable electronics, industrial manufacturing, smart cities, and point-of-care (PoC) diagnostics. Advancing sensor performance such as sensitivity to detect trace amounts (ppb-ppm) of analytes (gas/VOCs), selectivity, portability, and low cost is critical for many of these applications. These advancements are mainly achieved by selecting and optimizing sensing materials by their surface functionalization and/or structural optimization to achieve favorable transport characteristics or chemical binding/reaction sites. Surprisingly, the sensor geometry, shapes, and patterns were not considered as critical parameters, and most of these sensors were designed by following simple planar and interdigitated electrode geometry. In this study, we introduce a new bioinspired fractal approach to design chemoresistive sensors with fractal geometry, which grasp the architecture of fern leaves represented by the geometric group of space-filling curves of fractal patterns. These fractal sensors were printed by an extrusion process on a flexible substrate (PET) using specially formulated graphene ink as a sensing material, which provided significant enhancement of the active surface area to volume ratio and allowed high-resolution fractal patterning along with a reduced current transportation path. To demonstrate the advantages and influence of fractal geometry on sensor performance, here, three different kinds of sensors were fabricated based on different fractal geometrics (Sierpinski, Peano, and Hilbert), and the sensing performance was explored toward different VOC analytes (e.g., ethanol, methanol, and acetone). Among all these fractal-designed sensors including interdigitate sensors, the Hilbert-designed printed sensor shows enhanced sensing properties in terms of fast response time (6 s for 30 ppm), response value (14%), enhanced detection range (5-100 ppm), high selectivity, and low interference to humidity (up to RH 80%) for ethanol at room temperature (20 °C). Moreover, a significant improvement of this sensor performance was observed by applying the mechanical deformation (positive bending) technique. The practical application of this sensor was successfully demonstrated by monitoring food spoilage using a commercial box of strawberries as a model. Based on these presented results, this biofractal biomimetic VOC sensor is demonstrated for a prospective application in food monitoring.
Collapse
Affiliation(s)
- Kamrul Hassan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Tran Thanh Tung
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Pei Lay Yap
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Hadi Rastin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Nathan Stanley
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Md. Julker Nine
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
4
|
Liu Q, Tian B, Liang J, Wu W. Recent advances in printed flexible heaters for portable and wearable thermal management. MATERIALS HORIZONS 2021; 8:1634-1656. [PMID: 34846496 DOI: 10.1039/d0mh01950j] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flexible resistive heaters (FRHs) with high heating performance, large-area thermal homogeneity, and excellent thermal stability are very desirable in modern life, owing to their tremendous potential for portable and wearable thermal management applications, such as body thermotherapy, on-demand drug delivery, and artificial intelligence. Printed electronic (PE) technologies, as emerging methods combining conventional printing techniques with solution-processable functional ink have been proposed to be promising strategies for the cost-effective, large-scale, and high-throughput fabrication of printed FRHs. This review summarizes recent progress in the main components of FRHs, including conductive materials and flexible or stretchable substrates, focusing on the formulation of conductive ink systems for making printed FRHs by a variety of PE technologies including screen printing, inkjet printing, roll-to-roll (R2R) printing and three-dimensional (3D) printing. Various challenges facing the commercialization of printed FRHs and improved methods for portable and wearable thermal management applications have been discussed in detail to overcome these problems.
Collapse
Affiliation(s)
- Qun Liu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | |
Collapse
|
5
|
Feng J, Su BL, Xia H, Zhao S, Gao C, Wang L, Ogbeide O, Feng J, Hasan T. Printed aerogels: chemistry, processing, and applications. Chem Soc Rev 2021; 50:3842-3888. [PMID: 33522550 DOI: 10.1039/c9cs00757a] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As an extraordinarily lightweight and porous functional nanomaterial family, aerogels have attracted considerable interest in academia and industry in recent decades. Despite the application scopes, the modest mechanical durability of aerogels makes their processing and operation challenging, in particular, for situations demanding intricate physical structures. "Bottom-up" additive manufacturing technology has the potential to address this drawback. Indeed, since the first report of 3D printed aerogels in 2015, a new interdisciplinary research area combining aerogel and printing technology has emerged to push the boundaries of structure and performance, further broadening their application scope. This review summarizes the state-of-the-art of printed aerogels and presents a comprehensive view of their developments in the past 5 years, and highlights the key near- and mid-term challenges.
Collapse
Affiliation(s)
- Junzong Feng
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Guo Y, Pan F, Chen W, Ding Z, Yang D, Li B, Ming P, Zhang C. The Controllable Design of Catalyst Inks to Enhance PEMFC Performance: A Review. ELECTROCHEM ENERGY R 2020. [DOI: 10.1007/s41918-020-00083-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Hassan K, Nine MJ, Tung TT, Stanley N, Yap PL, Rastin H, Yu L, Losic D. Functional inks and extrusion-based 3D printing of 2D materials: a review of current research and applications. NANOSCALE 2020; 12:19007-19042. [PMID: 32945332 DOI: 10.1039/d0nr04933f] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Graphene and related 2D materials offer an ideal platform for next generation disruptive technologies and in particular the potential to produce printed electronic devices with low cost and high throughput. Interest in the use of 2D materials to create functional inks has exponentially increased in recent years with the development of new ink formulations linked with effective printing techniques, including screen, gravure, inkjet and extrusion-based printing towards low-cost device manufacturing. Exfoliated, solution-processed 2D materials formulated into inks permits additive patterning onto both rigid and conformable substrates for printed device design with high-speed, large-scale and cost-effective manufacturing. Each printing technique has some sort of clear advantages over others that requires characteristic ink formulations according to their individual operational principles. Among them, the extrusion-based 3D printing technique has attracted heightened interest due to its ability to create three-dimensional (3D) architectures with increased surface area facilitating the design of a new generation of 3D devices suitable for a wide variety of applications. There still remain several challenges in the development of 2D material ink technologies for extrusion printing which must be resolved prior to their translation into large-scale device production. This comprehensive review presents the current progress on ink formulations with 2D materials and their broad practical applications for printed energy storage devices and sensors. Finally, an outline of the challenges and outlook for extrusion-based 3D printing inks and their place in the future printed devices ecosystem is presented.
Collapse
Affiliation(s)
- Kamrul Hassan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Md Julker Nine
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Tran Thanh Tung
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Nathan Stanley
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Pei Lay Yap
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Hadi Rastin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Le Yu
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|