1
|
Deswal S, Das RC, Sarkar D, Biju AT. Simultaneous Activation of Bicyclobutanes and Indolyl Alcohols with HFIP: Access to Indole-Fused Bicyclo[3.1.1]Heptanes. Angew Chem Int Ed Engl 2025; 64:e202501655. [PMID: 40077997 DOI: 10.1002/anie.202501655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/14/2025]
Abstract
The concept of strain release to unleash unique reactivity that drives a wide range of synthetically valuable transformations has long intrigued chemists. Among the various strained systems, highly reactive bicyclo[1.1.0]butanes (BCBs) have recently emerged as versatile building blocks for constructing bicyclic scaffolds. Despite the existence of various activation pathways for BCBs, the use of 1,1,1,3,3,3-hexafluoroisopropan-2-ol (HFIP) to activate BCBs has not been realized so far. Herein, we report the first HFIP-promoted (3 + 3) annulation of BCBs with indolyl alcohols through the simultaneous activation of both partners, facilitating the metal- and photocatalyst-free synthesis of indole-fused bicyclo[3.1.1]heptanes. Mechanistic studies reveal the role of HFIP in activating both components, and the reaction proceeds by an initial (3 + 2) annulation followed by a ring expansion/aromatization cascade.
Collapse
Affiliation(s)
- Shiksha Deswal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Rohan Chandra Das
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Deeptanu Sarkar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
2
|
Hu J, Deng W, Zhou J, Huang Y. Cathodic tandem alkylation/dearomatization of heterocycles enabled by Al-facilitated carbonyl deoxygenation. Nat Commun 2025; 16:1029. [PMID: 39863582 PMCID: PMC11762781 DOI: 10.1038/s41467-025-56367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Developing efficient strategies for the deoxygenative functionalization of carbonyl compounds is crucial for enhancing the effective utilization of biomass and the upgrading of chemical feedstocks. In this study, we present an elegant cathodic reduction strategy that enables a tandem alkylation/dearomatization reaction between quinoline derivatives and aryl aldehydes/ketones in a one-pot process. Our approach can be executed via two distinct paths: the aluminum (Al)-facilitated spin-center shift (SCS) path and the Al-facilitated direct deoxygenation path. Both paths are theoretically substantiated by DFT calculations. The crux of this protocol is the in-situ activation of the alcohol intermediates by Al salts, which substantially lowers the activation energy necessary for the formation of key transition states, thereby effectively facilitating the deoxygenation process. Control experiments have not only successfully identified the intermediates but also established that the hydrogen source for the reaction is derived from water and tetrabutylammonium salt. Notably, this method is transition metal-free and compatible with water and oxygen.
Collapse
Affiliation(s)
- Jinhui Hu
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, PR China
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, PR China
| | - Weijie Deng
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, PR China
| | - Jianfeng Zhou
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, PR China
| | - Yubing Huang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, PR China.
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, PR China.
| |
Collapse
|
3
|
Galathri EM, Di Terlizzi L, Fagnoni M, Protti S, Kokotos CG. Friedel-Crafts arylation of aldehydes with indoles utilizing arylazo sulfones as the photoacid generator. Org Biomol Chem 2023; 21:365-369. [PMID: 36512428 DOI: 10.1039/d2ob02214a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A versatile, inexpensive and sustainable protocol for the preparation of valuable bis-indolyl methanes via visible light-mediated, metal-free Friedel-Crafts arylation has been developed. The procedure, that exploits the peculiar behavior of arylazo sulfones as non-ionic photoacid generators (PAGs), was applied to the conversion of a variety of aliphatic and aromatic aldehydes into diarylmethanes in good to highly satisfactory yields, employing a low-catalyst loading (0.5 mol%) and irradiation at 456 nm.
Collapse
Affiliation(s)
- Eirini M Galathri
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece.
| | - Lorenzo Di Terlizzi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece.
| |
Collapse
|
4
|
Zhang Y, Hou J, Yang H, Wang S, Yuan K. Electrochemically enhanced deoxygenative cross-coupling of aryl ketones with heteroarenes through in situ generated benzyl carbocations. Org Biomol Chem 2022; 21:80-84. [PMID: 36449338 DOI: 10.1039/d2ob02065c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Triflic acids/silanes as cooperative reductants enable the convenient transformation of CO bonds through a multistep reaction pathway in one pot. Electrolysis of the acidic reaction mixture significantly improved carbonyl reduction and thus facilitated the generation of benzyl carbocations, which show high reactivity towards electron-rich heteroarenes for C-C bond formation.
Collapse
Affiliation(s)
- Yiyi Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China. .,Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China
| | - Jianxin Hou
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China
| | - Hui Yang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China
| | - Shengdong Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Kedong Yuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
5
|
Xu Z, Li Y, Mo G, Zheng Y, Zeng S, Sun PH, Ruan Z. Electrochemical Oxidative Phosphorylation of Aldehyde Hydrazones. Org Lett 2020; 22:4016-4020. [DOI: 10.1021/acs.orglett.0c01343] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhongnan Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Yueheng Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Guangquan Mo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Yucheng Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Shaogao Zeng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, P.R. China
| | - Ping-Hua Sun
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, P.R. China
| | - Zhixiong Ruan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| |
Collapse
|