1
|
Zhao Y, Li T, Xie S, Zhang P, Mao H. Unlocking the access to nature-identical vanillin via isoeugenol ozonation: in situ ATR-IR monitoring and safety evaluation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:310-319. [PMID: 39623941 DOI: 10.1039/d4ay01306a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The transformation of renewable feedstocks into aromatic chemicals holds immense potential for advancing a green, low-carbon economy and fostering sustainable development. Herein, we present a novel approach for the conversion of isoeugenol, a renewable lignin derivative, into the valuable flavoring agent vanillin, utilizing ozone as an environmentally benign oxidant. The process optimization was significantly enhanced by the integration of in situ Attenuated Total Reflectance Infrared (ATR-IR) monitoring. The introduction of H2O not only accelerated the decay of carbonyl oxides (Criegee intermediates) but also mitigated safety hazards stemming from the vigorous decomposition and heat release of secondary ozonides. Compared to the conventional Thin Layer Chromatography (TLC) method, ATR-IR monitoring demonstrated superior sensitivity and precision in determining the reaction endpoint, leading to a remarkable vanillin yield of 96.86% upon complete conversion of isoeugenol. Additionally, a comparative assessment of the sustainability of our approach with existing methods was undertaken, and valuable recommendations for safety assessments were provided to ensure the inherent safety of chemical engineering reactions. The present study serves as a pioneering effort in facilitating the implementation of a scalable, economically feasible and environmentally sustainable strategy for biomass flavor production, while contributing to the broader adoption of in situ spectroscopic technology within the larger economy.
Collapse
Affiliation(s)
- Yun Zhao
- Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.
- Shanghai Research Institute of Fragrance & Flavor Industry, 480 Nanning Road, Shanghai, 200232, China
| | - Tingfei Li
- Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.
| | - Sisi Xie
- Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.
| | - Pingyi Zhang
- Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.
| | - Haifang Mao
- Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.
- Shanghai Research Institute of Fragrance & Flavor Industry, 480 Nanning Road, Shanghai, 200232, China
| |
Collapse
|
2
|
Bitenc J, Pirnat K, Lužanin O, Dominko R. Organic Cathodes, a Path toward Future Sustainable Batteries: Mirage or Realistic Future? CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1025-1040. [PMID: 38370280 PMCID: PMC10870817 DOI: 10.1021/acs.chemmater.3c02408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 02/20/2024]
Abstract
Organic active materials are seen as next-generation battery materials that could circumvent the sustainability and cost limitations connected with the current Li-ion battery technology while at the same time enabling novel battery functionalities like a bioderived feedstock, biodegradability, and mechanical flexibility. Many promising research results have recently been published. However, the reproducibility and comparison of the literature results are somehow limited due to highly variable electrode formulations and electrochemical testing conditions. In this Perspective, we provide a critical view of the organic cathode active materials and suggest future guidelines for electrochemical characterization, capacity evaluation, and mechanistic investigation to facilitate reproducibility and benchmarking of literature results, leading to the accelerated development of organic electrode active materials for practical applications.
Collapse
Affiliation(s)
- Jan Bitenc
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
pot 113, 1000 Ljubljana, Slovenia
| | - Klemen Pirnat
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Olivera Lužanin
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
pot 113, 1000 Ljubljana, Slovenia
| | - Robert Dominko
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
pot 113, 1000 Ljubljana, Slovenia
- Alistore-European
Research Institute, CNRS FR 3104, Hub de l’Energie, Rue Baudelocque, 80039 Amiens, France
| |
Collapse
|
3
|
Samajdar RN, Brown SA, Kairy SK, Robertson SD, Wain AJ. Methodologies for Operando ATR-IR Spectroscopy of Magnesium Battery Electrolytes. Anal Chem 2022; 94:14985-14993. [PMID: 36260706 DOI: 10.1021/acs.analchem.2c02843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We explore the suitability of operando attenuated total reflection infrared (ATR-IR) spectroscopy methodologies for the study of organoaluminate electrolytes for Mg battery applications. The "all-phenyl complex" in tetrahydrofuran (THF), with the molecular structure [Mg2Cl3·6THF]+[AlPh4]-, is used as an exemplar electrolyte to compare two different spectroelectrochemical cell configurations. In one case, a Pt gauze is used as a working electrode, while in the second case, a thin (∼10 nm) Pt film working electrode is deposited directly on the surface of the ATR crystal. Spectroscopic measurements indicate substantial differences in the ATR-IR response for the two configurations, reflecting the different spatial arrangements of the working electrode with respect to the ATR sampling volume. The relative merits and potential pitfalls associated with the two approaches are discussed.
Collapse
Affiliation(s)
- Rudra N Samajdar
- Department of Electromagnetic and Electrochemical Technologies, National Physical Laboratory, Teddington TW11 0LW, U.K.,WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Scott A Brown
- Department of Electromagnetic and Electrochemical Technologies, National Physical Laboratory, Teddington TW11 0LW, U.K.,WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Shravan K Kairy
- Department of Electromagnetic and Electrochemical Technologies, National Physical Laboratory, Teddington TW11 0LW, U.K
| | - Stuart D Robertson
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Andrew J Wain
- Department of Electromagnetic and Electrochemical Technologies, National Physical Laboratory, Teddington TW11 0LW, U.K
| |
Collapse
|
4
|
Lu Y, Cai Y, Zhang Q, Chen J. Insights into Redox Processes and Correlated Performance of Organic Carbonyl Electrode Materials in Rechargeable Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104150. [PMID: 34617334 DOI: 10.1002/adma.202104150] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Organic carbonyl electrode materials have shown great prospects for rechargeable batteries in view of their high capacity, flexible designability, and sustainable production. However, organic carbonyl electrode materials still suffer from unsatisfactory electrochemical performance, which is highly relevant to their redox processes. Herein, an in-depth understanding on redox processes and the correlated electrochemical performance of organic carbonyl electrode materials is provided. The redox processes discussed mainly involve molecular structure evolution (intermediates), crystal structure evolution (phase transition), and charge storage mechanisms. The properties of intermediates can affect voltage, cycling stability, reversible capacity, and rate performance of batteries. Moreover, the reversible capacity/cycling stability and rate performance would be also influenced by phase transition and charge storage mechanisms (diffusion- or surface-controlled), respectively. To accelerate the practical applications of organic carbonyl electrode materials, future work should focus on developing more in situ or operando characterization techniques and further understanding the intrinsic relationships between redox processes and performance. It is hoped that the work discussed herein will stimulate more attention to the detailed redox processes and their correlations with the performance of organic carbonyl electrode materials in rechargeable batteries.
Collapse
Affiliation(s)
- Yong Lu
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yichao Cai
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qiu Zhang
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun Chen
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Wang H, Mao M, Wang C. Storing Mg Ions in Polymers: A Perspective. Macromol Rapid Commun 2022; 43:e2200198. [PMID: 35445475 DOI: 10.1002/marc.202200198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/20/2022] [Indexed: 11/07/2022]
Abstract
The electrochemical performance of rechargeable Mg batteries (RMBs) is primarily determined by the cathodes. However, the strong interaction between highly polarized Mg2+ and the host lattice is a big challenge for inorganic cathode materials. While endowed with weak interaction with Mg2+ , organic polymers are capable of fast reaction kinetics. Besides, with the advantages of light weight, abundance, low cost, and recyclability, polymers are deemed as ideal cathode materials for RMBs. Although polymer cathodes have remarkably progressed in recent years, there are still significant challenges to overcome before reaching practical application. In this perspective, the challenges faced by polymer cathodes are critically focused, followed by the retrospection of efforts devoted to design polymers. Some feasible strategies are proposed to explore new structures and chemistries for the practical application of polymer cathodes in RMBs.
Collapse
Affiliation(s)
- Haoxiang Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Minglei Mao
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chengliang Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
6
|
Lau VWH, Kim JB, Zou F, Kang YM. Elucidating the charge storage mechanism of carbonaceous and organic electrode materials for sodium ion batteries. Chem Commun (Camb) 2021; 57:13465-13494. [PMID: 34853843 DOI: 10.1039/d1cc04925a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sodium ion batteries (SIB) have received much research attention in the past decades as they are considered to be one alternative to the currently prevalent lithium ion batteries, and carbonaceous and organic compounds present two promising classes of SIB electrode materials advantaged by abundance of their constituent elements and reduced environmental footprints. To accelerate the development of these materials for SIB applications, future research directions must be guided by a thorough understanding of the charge storage mechanism. This review presents recent efforts in mechanism elucidation for these two classes of SIB electrode materials since, compared to their inorganic counterparts, they have unique challenges in material analysis. Topics covered will include characterization techniques and analytical frameworks for mechanism elucidation, emphasizing the advantages and limitations of individual experimental methodologies and providing a commentary on scientific rigor in result interpretation.
Collapse
Affiliation(s)
- Vincent Wing-Hei Lau
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea. .,Brain Korea Center for Smart Materials and Devices, Korea University, Seoul 02841, Republic of Korea
| | - Jae-Bum Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Feng Zou
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Yong-Mook Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea. .,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
7
|
Chen Y, Hu P, Huang Z, Wang J, Song H, Chen X, Lin X, Wu T, Tan X. Significant Enhancement of the Polarization Holographic Performance of Photopolymeric Materials by Introducing Graphene Oxide. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27500-27512. [PMID: 34096696 DOI: 10.1021/acsami.1c07390] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Relying on various defects and functional oxygen-containing groups on the basal planes, graphene oxide (GO) is commonly unitized for intimate mixing with a polymer matrix to fabricate high-performance nanocomposite polymeric materials with the characteristics of graphene. Herein, by introducing GO nanosheets in a phenanthraquinone-doped polymethyl methacrylate (PQ/PMMA) photopolymer, we demonstrate that the polarization holographic diffraction efficiency of nanocomposite materials can be dramatically enhanced up to nearly 10 times and the photosensitivity can also be enhanced by more than 3 times. Experimental observations reveal that the incorporation of GO nanosheets serves as a polymerization initiator not only to promote the polymerization of MMA monomers and induce the drafting behavior of the PMMA polymer on its surface but also to effectively modulate the molecular weight of the PQ/PMMA photopolymer by adjusting the doping concentration of GO nanosheets. The current study, for the first time, demonstrates that the modulation of molecular weight for PQ/PMMA photopolymers here exerts a significant impact on their holography performance. In addition, due to the strong physisorption of PQ photosensitizers onto GO nanosheets, the aggregation of PQ around GO-graft-PMMA also facilitates the formation of GO-graft-PMMA/PQ and is beneficial to the enhancement of holographic performance. The emergence of GO-graft-PMMA/PQ nanocomposite materials here is expected to fulfill the requirement of high-performance polarization-sensitive materials in the field of polarization holographic data storage and provide a facile but effective nanocomposite doping strategy to modulate the holographic performance of photopolymers from micro- and mesoscopic levels.
Collapse
Affiliation(s)
- Yuxin Chen
- College of Photonic and Electronic Engineer, Fujian Normal University, Fuzhou 350117, China
| | - Po Hu
- College of Photonic and Electronic Engineer, Fujian Normal University, Fuzhou 350117, China
| | - Zhiyun Huang
- College of Photonic and Electronic Engineer, Fujian Normal University, Fuzhou 350117, China
| | - Jinyu Wang
- College of Photonic and Electronic Engineer, Fujian Normal University, Fuzhou 350117, China
| | - Haiyang Song
- College of Photonic and Electronic Engineer, Fujian Normal University, Fuzhou 350117, China
| | - Xi Chen
- College of Photonic and Electronic Engineer, Fujian Normal University, Fuzhou 350117, China
| | - Xiao Lin
- College of Photonic and Electronic Engineer, Fujian Normal University, Fuzhou 350117, China
| | - Tianmin Wu
- College of Photonic and Electronic Engineer, Fujian Normal University, Fuzhou 350117, China
| | - Xiaodi Tan
- Information Photonics Research Center, Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
8
|
Zhang W, Huang W, Zhang Q. Organic Materials as Electrodes in Potassium‐Ion Batteries. Chemistry 2021; 27:6131-6144. [DOI: 10.1002/chem.202005259] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/24/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Weisheng Zhang
- School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Weiwei Huang
- School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering City University of Hong Kong Hong Kong 999077 P. R. China
| |
Collapse
|