1
|
Kammoun M, Margellou A, Toteva VB, Aladjadjiyan A, Sousa AF, Luis SV, Garcia-Verdugo E, Triantafyllidis KS, Richel A. The key role of pretreatment for the one-step and multi-step conversions of European lignocellulosic materials into furan compounds. RSC Adv 2023; 13:21395-21420. [PMID: 37469965 PMCID: PMC10352963 DOI: 10.1039/d3ra01533e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Nowadays, an increased interest from the chemical industry towards the furanic compounds production, renewable molecules alternatives to fossil molecules, which can be transformed into a wide range of chemicals and biopolymers. These molecules are produced following hexose and pentose dehydration. In this context, lignocellulosic biomass, owing to its richness in carbohydrates, notably cellulose and hemicellulose, can be the starting material for monosaccharide supply to be converted into bio-based products. Nevertheless, processing biomass is essential to overcome the recalcitrance of biomass, cellulose crystallinity, and lignin crosslinked structure. The previous reports describe only the furanic compound production from monosaccharides, without considering the starting raw material from which they would be extracted, and without paying attention to raw material pretreatment for the furan production pathway, nor the mass balance of the whole process. Taking account of these shortcomings, this review focuses, firstly, on the conversion potential of different European abundant lignocellulosic matrices into 5-hydroxymethyl furfural and 2-furfural based on their chemical composition. The second line of discussion is focused on the many technological approaches reported so far for the conversion of feedstocks into furan intermediates for polymer technology but highlighting those adopting the minimum possible steps and with the lowest possible environmental impact. The focus of this review is to providing an updated discussion of the important issues relevant to bringing chemically furan derivatives into a market context within a green European context.
Collapse
Affiliation(s)
- Maroua Kammoun
- Laboratory of Biomass and Green Technologies, University of Liege Belgium
| | - Antigoni Margellou
- Department of Chemistry, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Vesislava B Toteva
- Department of Textile, Leather and Fuels, University of Chemical Technology and Metallurgy Sofia Bulgaria
| | | | - Andreai F Sousa
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro 3810-193 Aveiro Portugal
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra Rua Sílvio Lima-Polo II 3030-790 Coimbra Portugal
| | - Santiago V Luis
- Dpt. of Inorganic and Organic Chemistry, Supramolecular and Sustainable Chemistry Group, University Jaume I Avda Sos Baynat s/n E-12071-Castellon Spain
| | - Eduardo Garcia-Verdugo
- Dpt. of Inorganic and Organic Chemistry, Supramolecular and Sustainable Chemistry Group, University Jaume I Avda Sos Baynat s/n E-12071-Castellon Spain
| | | | - Aurore Richel
- Laboratory of Biomass and Green Technologies, University of Liege Belgium
| |
Collapse
|
2
|
Nair LG, Agrawal K, Verma P. An insight into the principles of lignocellulosic biomass-based zero-waste biorefineries: a green leap towards imperishable energy-based future. Biotechnol Genet Eng Rev 2022; 38:288-338. [PMID: 35670485 DOI: 10.1080/02648725.2022.2082223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lignocellulosic biomass (LCB) is an energy source that has a huge impact in today's world. The depletion of fossil fuels, increased pollution, climatic changes, etc. have led the public and private sectors to move towards sustainability i.e. using LCB for the production of biofuels and value-added compounds. A major bottleneck of the process is the recalcitrant nature of LCB. This can be overcome by using various pretreatment strategies like physical, chemical, biological, physicochemical, etc. Further, the pretreated biomass is made to undergo various steps like hydrolysis, saccharification, etc. for the conversion of value-added products and the remaining waste residues can be further utilized for the synthesis of secondary products thus favouring the zero-waste biorefinery concept. Currently, microorganisms are being explored for their use in biorefinery but the unavailability of commercial strains is a major limitation. Thus, the use of metagenomics can be used to overcome the limitation which is both cost-effective and environmentally friendly. The review deliberates the composition of LCBs, and their recalcitrance nature, followed by the structural changes caused by various pretreatment methods. The further steps in biorefineries, strategies for the development of zero-waste refineries, bottlenecks, and suggestions are also discussed. Special emphasis is given to the use of metagenomics for the discovery of microorganisms efficient for zero-waste biorefineries.
Collapse
Affiliation(s)
- Lakshana G Nair
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Kishangarh, Ajmer, India
| | - Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Kishangarh, Ajmer, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Kishangarh, Ajmer, India
| |
Collapse
|
3
|
Wang H, Peng X, Li H, Giannis A, He C. Recent Biotechnology Advances in Bio-Conversion of Lignin to Lipids by Bacterial Cultures. Front Chem 2022; 10:894593. [PMID: 35494654 PMCID: PMC9039179 DOI: 10.3389/fchem.2022.894593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
The complexity and recalcitrance of the lignin structure is a major barrier to its efficient utilization and commercial production of high-value products. In recent years, the “bio-funneling” transformation ability of microorganisms has provided a significant opportunity for lignin conversion and integrated biorefinery. Based on the chemical structure of lignin, this mini-review introduces the recent advances of lignin depolymerization by bacterial strains and the application of microbial lignin degradation in lipids production. Furthermore, the current challenges, future trends and perspectives for microbe-based lignin conversion to lipids are discussed.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
- Guizhou Industry Polytechnic College, Guiyang, China
| | - Xiaodong Peng
- Guizhou Institute of Products Quality Inspection and Testing, Guiyang, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
- *Correspondence: Hu Li, ; Chao He,
| | - Apostolos Giannis
- School of Chemical and Environmental Engineering, Technical University of Crete, University Campus, Chania, Greece
| | - Chao He
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
- *Correspondence: Hu Li, ; Chao He,
| |
Collapse
|
4
|
Bimetallic MOF-Derived Synthesis of Cobalt-Cerium Oxide Supported Phosphotungstic Acid Composites for the Oleic Acid Esterification. J CHEM-NY 2021. [DOI: 10.1155/2021/2131960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The impregnation of phosphotungstic acid (HPW) with porous cobalt-cerium oxide (HPW@CoCeO) has been prepared by pyrolysis of CoCe-MOF and used for the production of methyl oleate from oleic acid and methanol. FTIR, XRD, SEM, TEM, N2 adsorption/desorption, and NH3-TPD were characterized for the prepared composites. Simultaneously, the effects of reaction time, substrate molar ratio, temperature, and catalyst loading on catalytic activity were highlighted, and the conversion of 67.2% was reached after 4 h at 60°C. Importantly, HPW@CoCeO was reusabe and reused more than eight times, and the oleic acid conversion could be maintained at 61.8% without significant activity loss. Thus, the HPW@CoCeO composite could be used as acid catalysts for sustainable energy production.
Collapse
|
5
|
Affiliation(s)
- Xiang Tan
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering Key Laboratory of Green Pesticide & Agricultural Bioengineering Ministry of Education State-Local Joint Laboratory for Comprehensive Utilization of Biomass Center for R&D of Fine Chemicals Guizhou University Guiyang 550025 P. R. China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control Ministry of Education School of Public Health Guizhou Medical University Guiyang 550025 P. R. China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering Key Laboratory of Green Pesticide & Agricultural Bioengineering Ministry of Education State-Local Joint Laboratory for Comprehensive Utilization of Biomass Center for R&D of Fine Chemicals Guizhou University Guiyang 550025 P. R. China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering Key Laboratory of Green Pesticide & Agricultural Bioengineering Ministry of Education State-Local Joint Laboratory for Comprehensive Utilization of Biomass Center for R&D of Fine Chemicals Guizhou University Guiyang 550025 P. R. China
| |
Collapse
|
6
|
Zhuang H, Lee PH, Wu Z, Jing H, Guan J, Tang X, Tan GYA, Leu SY. Genomic driven factors enhance biocatalyst-related cellulolysis potential in anaerobic digestion. BIORESOURCE TECHNOLOGY 2021; 333:125148. [PMID: 33878497 DOI: 10.1016/j.biortech.2021.125148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) is a promising technology to recover bioenergy from biodegradable biomass, including cellulosic wastes. Through a few fractionation/separation techniques, cellulose has demonstrated its potential in AD, but the performance of the process is rather substrate-specific, as cellulolysis bacteria are sensitive to the enzyme-substrate interactions. Cellulosome is a self-assembled enzyme complex with many functionalized modules in the bacteria which has been gradually studied, however the genomic fingerprints of the culture-specific cellulosome in AD are relatively unclear especially under processing conditions. To clarify the key factors affecting the cellulosome induced cellulolysis, this review summarized the most recent publications of AD regarding the fates of cellulose, sources and functional genes of cellulosome, and omics methods for functional analyses. Different processes for organic treatment including applying food grinds in sewer, biomass valorization, cellulose fractionation, microaeration, and enzymatic hydrolysis enhanced fermentation, were highlighted to support the sustainable development of AD technology.
Collapse
Affiliation(s)
- Huichuan Zhuang
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Po-Heng Lee
- Dept. of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Zhuoying Wu
- Dept. of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Houde Jing
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jianyu Guan
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Xiaojing Tang
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Giin-Yu Amy Tan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Shao-Yuan Leu
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
7
|
Tan J, Li Y, Tan X, Wu H, Li H, Yang S. Advances in Pretreatment of Straw Biomass for Sugar Production. Front Chem 2021; 9:696030. [PMID: 34164381 PMCID: PMC8215366 DOI: 10.3389/fchem.2021.696030] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022] Open
Abstract
Straw biomass is an inexpensive, sustainable, and abundant renewable feedstock for the production of valuable chemicals and biofuels, which can surmount the main drawbacks such as greenhouse gas emission and environmental pollution, aroused from the consumption of fossil fuels. It is rich in organic content but is not sufficient for extensive applications because of its natural recalcitrance. Therefore, suitable pretreatment is a prerequisite for the efficient production of fermentable sugars by enzymatic hydrolysis. Here, we provide an overview of various pretreatment methods to effectively separate the major components such as hemicellulose, cellulose, and lignin and enhance the accessibility and susceptibility of every single component. This review outlines the diverse approaches (e.g., chemical, physical, biological, and combined treatments) for the excellent conversion of straw biomass to fermentable sugars, summarizes the benefits and drawbacks of each pretreatment method, and proposes some investigation prospects for the future pretreatments.
Collapse
Affiliation(s)
- Jinyu Tan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China.,Institute of Crops Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yan Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Xiang Tan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Hongguo Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
8
|
Satari B, Jaiswal AK. Green fractionation of 2G and 3G feedstocks for ethanol production: advances, incentives and barriers. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Abstract
Carbon dioxide is an intrinsically stable molecule; however, it can readily react with various nucleophilic reagents. In the presence of a cyanide source, CO2 was proven to be useful to promote addition reactions. Here we report the use of CO2 to facilitate 1,4-conjugate cyanide addition reaction to chalcones to generate organonitriles. Nitriles are key component in organic synthesis due to their utility in numerous functional group transformation, however, conjugation addition of cyanide has been a challenge in this substrate class due to side reactions. To mitigate this, we employed simple ammonium and metal cyanide sources as nucleophiles under carbon dioxide atmosphere where high selectivity toward the desired product was obtained. The presented reaction is not feasible under inert atmosphere, which highlights the important role of CO2, as a Lewis and Brøndsted acidic catalyst. Further derivatization of organonitriles compounds were performed to showcase the utility of the reaction, while an unprecedented dimerization reaction was identified and characterized, affording a cyclopentanone scaffold.
Collapse
|
10
|
Zhao ZM, Liu ZH, Pu Y, Meng X, Xu J, Yuan JS, Ragauskas AJ. Emerging Strategies for Modifying Lignin Chemistry to Enhance Biological Lignin Valorization. CHEMSUSCHEM 2020; 13:5423-5432. [PMID: 32750220 DOI: 10.1002/cssc.202001401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Biological lignin valorization represents a promising approach contributing to sustainable and economic biorefineries. The low level of valuable lignin-derived products remains a major challenge hindering the implementation of microbial lignin conversion. Lignin's properties play a significant role in determining the efficiency of lignin bioconversion. To date, despite significant progress in the development of biomass pretreatment, lignin fractionation, and fermentation over the last few decades, little efforts have gone into identifying the ideal lignin substrates for an efficient microbial metabolism. In this Minireview, emerging and state-of-the-art strategies for biomass pretreatment and lignin fractionation are summarized to elaborate their roles in modifying lignin structure for bioconversion. Fermentation strategies aimed at enhancing lignin depolymerization for microbial utilization are systematically reviewed as well. With an improved understanding of the ideal lignin structure elucidated by comprehensive metabolic pathways and/or big data analysis, modifying lignin chemistry could be more directional and effective. Ultimately, together with the progress of fermentation process optimization, biological lignin valorization will become more competitive in biorefineries.
Collapse
Affiliation(s)
- Zhi-Min Zhao
- School of Ecology and Environment, Inner Mongolia Key Laboratory of Environmental Pollution Controlling and Wastes Recycling, Inner Mongolia University, Hohhot, 010021, P. R. China
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Zhi-Hua Liu
- Synthetic and Systems Biology Innovation Hub (SSBiH), Texas A&M University, College Station, TX 77843, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Yunqiao Pu
- Center for Bioenergy Innovation, Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
| | - Xianzhi Meng
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Jifei Xu
- School of Ecology and Environment, Inner Mongolia Key Laboratory of Environmental Pollution Controlling and Wastes Recycling, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Joshua S Yuan
- Synthetic and Systems Biology Innovation Hub (SSBiH), Texas A&M University, College Station, TX 77843, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
- Center for Bioenergy Innovation, Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
- Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| |
Collapse
|