1
|
Xia B, Chen H, Wang J, Liu Y, Wu Q, Pan X. Enzymatic polymerization: Recent advances toward sustainable polymer synthesis. Biotechnol Adv 2025; 81:108566. [PMID: 40118227 DOI: 10.1016/j.biotechadv.2025.108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/11/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
Enzymatic polymerization has emerged as a sustainable strategy for synthesizing biodegradable, biocompatible polymers, addressing critical environmental challenges posed by conventional petroleum-based materials. This review comprehensively explores advancements from the past five years, spotlighting six pivotal enzymes lipase, horseradish peroxidase, laccase, glucose oxidase, glucosyltransferase, and phosphorylase-alongside synergistic multi-enzymatic systems that enable complex polymerization cascades. Diverging from prior reviews focused on individual enzymes or specific polymer classes (e.g., polyesters, polyamides), our work provides a systematic classification of enzymatic polymerization mechanisms, emphasizing substrate specificity, reaction efficiency, and product diversity. Integrating advances in enzyme engineering, cascade catalysis, and green chemistry, this analysis outlines strategies to customize polymer architectures, identifies challenges in scaling enzymatic processes, and underscores opportunities for industrial applications. It advocates interdisciplinary innovation to advance sustainable polymer synthesis aligned with circular economy principles, emphasizing enzymatic methods' transformative potential for eco-friendly manufacturing paradigms.
Collapse
Affiliation(s)
- Bo Xia
- Jiyang College of Zhejiang A&F University, Zhuji 311800, China.
| | - Honghao Chen
- Jiyang College of Zhejiang A&F University, Zhuji 311800, China
| | - Juntao Wang
- Jiyang College of Zhejiang A&F University, Zhuji 311800, China
| | - Yan Liu
- Jiyang College of Zhejiang A&F University, Zhuji 311800, China
| | - Qi Wu
- Zhejiang University, Hangzhou 310058, China.
| | - Xiaocheng Pan
- Jiyang College of Zhejiang A&F University, Zhuji 311800, China.
| |
Collapse
|
2
|
Kamran M, Kay A, Davidson MG. Facile Synthesis of a Novel Furanic Monomer and Its ADMET Polymerization toward Fully Renewable Functional Polymers. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:13798-13809. [PMID: 39301519 PMCID: PMC11409216 DOI: 10.1021/acssuschemeng.4c03498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Efficient and sustainable transformation of biomass-derived chemicals to materials with the potential to replace conventional fossil-derived polymers is considered a major challenge. In this work, we disclose the synthesis of a novel furan-based α,ω-diene monomer following a facile, green, and energy-efficient process from fully renewable starting materials. The multifunctional monomer was produced by the base-catalyzed cross-aldol condensation of 10-undecenal (UA) and 2,5-diformylfuran (DFF) under mild conditions, providing the desired product in good yields. By employing the new monomer, fully biobased polymers were prepared in good molecular weights (M n up to 31 kg/mol) by acyclic diene metathesis (ADMET) polymerization using Grubb's second-generation catalysts. The structure-property investigation of the polymers revealed T g in the range of -16 to 5 °C, high thermal stability, good hydrophobicity, and photoactive properties. Owning to the presence of amenable functional groups, the resultant polymer was also subjected to postpolymerization modifications. The effect of these modifications on the polymer properties showed enhanced crystallization attributed to hydrogen bonding interactions. This work demonstrates a scalable and environmentally benign approach to access structurally novel and versatile materials exhibiting interesting properties from 100% biobased resources.
Collapse
Affiliation(s)
- Muhammad Kamran
- Institute for Sustainability, University of Bath, Claverton Down, Bath BA2 7AY, U.K
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Andrew Kay
- Institute for Sustainability, University of Bath, Claverton Down, Bath BA2 7AY, U.K
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Matthew G Davidson
- Institute for Sustainability, University of Bath, Claverton Down, Bath BA2 7AY, U.K
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
3
|
Chacón-Huete F, Messina C, Cigana B, Forgione P. Diverse Applications of Biomass-Derived 5-Hydroxymethylfurfural and Derivatives as Renewable Starting Materials. CHEMSUSCHEM 2022; 15:e202200328. [PMID: 35652539 DOI: 10.1002/cssc.202200328] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/29/2022] [Indexed: 06/15/2023]
Abstract
This Review summarizes recent efforts to capitalize on 5-hydroxymethylfurfural (HMF) and related furans as emerging building blocks for the synthesis of fine chemicals and materials, with a focus on advanced applications within medicinal and polymer chemistry, as well as nanomaterials. As with all chemical industries, these fields have historically relied heavily on petroleum-derived starting materials, an unsustainable and polluting feedstock. Encouragingly, the emergent chemical versatility of biomass-derived furans has been shown to facilitate derivatization towards valuable targets. Continued work on the synthetic manipulation of HMF, and related derivatives, for access to a wide range of target compounds and materials is crucial for further development. Increasingly, biomass-derived furans are being utilized for a wide range of chemical applications, the continuation of which is paramount to accelerate the paradigm shift towards a sustainable chemical industry.
Collapse
Affiliation(s)
- Franklin Chacón-Huete
- Department of Chemistry and Biochemistry and Centre for Green Chemistry and Catalysis, Concordia University, 7141, rue Sherbrooke O., Montreal, QC, H4B 1R6, Canada
| | - Cynthia Messina
- Department of Chemistry and Biochemistry and Centre for Green Chemistry and Catalysis, Concordia University, 7141, rue Sherbrooke O., Montreal, QC, H4B 1R6, Canada
| | - Brandon Cigana
- Department of Chemistry and Biochemistry and Centre for Green Chemistry and Catalysis, Concordia University, 7141, rue Sherbrooke O., Montreal, QC, H4B 1R6, Canada
| | - Pat Forgione
- Department of Chemistry and Biochemistry and Centre for Green Chemistry and Catalysis, Concordia University, 7141, rue Sherbrooke O., Montreal, QC, H4B 1R6, Canada
| |
Collapse
|
4
|
Jordan A, Hall CGJ, Thorp LR, Sneddon HF. Replacement of Less-Preferred Dipolar Aprotic and Ethereal Solvents in Synthetic Organic Chemistry with More Sustainable Alternatives. Chem Rev 2022; 122:6749-6794. [PMID: 35201751 PMCID: PMC9098182 DOI: 10.1021/acs.chemrev.1c00672] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dipolar aprotic and ethereal solvents comprise just over 40% of all organic solvents utilized in synthetic organic, medicinal, and process chemistry. Unfortunately, many of the common "go-to" solvents are considered to be "less-preferable" for a number of environmental, health, and safety (EHS) reasons such as toxicity, mutagenicity, carcinogenicity, or for practical handling reasons such as flammability and volatility. Recent legislative changes have initiated the implementation of restrictions on the use of many of the commonly employed dipolar aprotic solvents such as dimethylformamide (DMF) and N-methyl-2-pyrrolidinone (NMP), and for ethers such as 1,4-dioxane. Thus, with growing legislative, EHS, and societal pressures, the need to identify and implement the use of alternative solvents that are greener, safer, and more sustainable has never been greater. Within this review, the ubiquitous nature of dipolar aprotic and ethereal solvents is discussed with respect to the physicochemical properties that have made them so appealing to synthetic chemists. An overview of the current legislative restrictions being imposed on the use of dipolar aprotic and ethereal solvents is discussed. A variety of alternative, safer, and more sustainable solvents that have garnered attention over the past decade are then examined, and case studies and examples where less-preferable solvents have been successfully replaced with a safer and more sustainable alternative are highlighted. Finally, a general overview and guidance for solvent selection and replacement are included in the Supporting Information of this review.
Collapse
Affiliation(s)
- Andrew Jordan
- School of Chemistry, University of Nottingham, GlaxoSmithKline Carbon Neutral Laboratory, 6 Triumph Road, Nottingham, NG7 2GA, U.K
| | - Callum G J Hall
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow, Scotland G1 1XL, U.K.,GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Lee R Thorp
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Helen F Sneddon
- Green Chemistry Centre of Excellence, University of York, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
5
|
Wang Z, Flores Q, Guo H, Trevizo R, Zhang X, Wang S. Crystal Engineering Construction of Caffeic Acid Derivatives with Potential Applications in Pharmaceuticals and Degradable Polymeric Materials. CrystEngComm 2020; 22:7847-7857. [PMID: 33343233 PMCID: PMC7744004 DOI: 10.1039/d0ce01403f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Natural products are precious feedstock in drug discovery and sustainable materials. This work using crystal engineering strategy, visible light, and solvent-free cycloaddition successfully constructed two caffeic acid derivatives, rel-(1R,2R,3S,4S)-2,4-bis(3,4-dihydroxyphenyl)cyclobutane-1,3-dicarboxylate and rel-(1R,2R,3S,4S)-2,4-bis(3,4-dihydroxyphenyl)cyclobutane-1,3-dicarboxylic acid. Because of the multiple stereocenters, it is challenging to prepare those compounds using traditional organic synthesis methods. The crystal engineering Hirshfeld surface analysis and 2D intermolecular interaction fingerprints were applied to synthetic route design. The light resources used in this work was visible LED or free, clean, and renewable sunlight. The evidence suggested that pure stereoisomer was obtained demonstrating the stereospecificity and efficiency of the topochemical cycloaddition reaction. The derivatives exhibited free radical scavenging and antioxidant biological activities, as well as the potential inhibitory activity of fatty acid binding proteins. One of the derivatives is the precursor of the natural product Shimobashiric acid C which paves the way for the total synthesis and further study of Shimobashiric acid C. In addition, the derivatives possess photodegradability at a specific wavelength, which is very attractive for "green" degradable polymeric materials.
Collapse
Affiliation(s)
- Zhihan Wang
- Department of Physical Sciences, Eastern New Mexico University, Portales, NM 88130, USA
| | - Quinton Flores
- Department of Physical Sciences, Eastern New Mexico University, Portales, NM 88130, USA
| | - Hongye Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Raquel Trevizo
- Department of Physical Sciences, Eastern New Mexico University, Portales, NM 88130, USA
| | - Xiaochan Zhang
- Department of Physical Sciences, Eastern New Mexico University, Portales, NM 88130, USA
| | - Shihan Wang
- College of Chinese Herbal Medicine, Jilin Agricultural University, Changchun, Jilin 130118, China
| |
Collapse
|