1
|
Mohammed H, Mia MF, Wiggins J, Desai S. Nanomaterials for Energy Storage Systems-A Review. Molecules 2025; 30:883. [PMID: 40005192 PMCID: PMC11858221 DOI: 10.3390/molecules30040883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
The ever-increasing global energy demand necessitates the development of efficient, sustainable, and high-performance energy storage systems. Nanotechnology, through the manipulation of materials at the nanoscale, offers significant potential for enhancing the performance of energy storage devices due to unique properties such as increased surface area and improved conductivity. This review paper investigates the crucial role of nanotechnology in advancing energy storage technologies, with a specific focus on capacitors and batteries, including lithium-ion, sodium-sulfur, and redox flow. We explore the diverse applications of nanomaterials in batteries, encompassing electrode materials (e.g., carbon nanotubes, metal oxides), electrolytes, and separators. To address challenges like interfacial side reactions, advanced nanostructured materials are being developed. We also delve into various manufacturing methods for nanomaterials, including top-down (e.g., ball milling), bottom-up (e.g., chemical vapor deposition), and hybrid approaches, highlighting their scalability considerations. While challenges such as cost-effectiveness and environmental concerns persist, the outlook for nanotechnology in energy storage remains promising, with emerging trends including solid-state batteries and the integration of nanomaterials with artificial intelligence for optimized energy storage.
Collapse
Affiliation(s)
- Habeeb Mohammed
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (H.M.); (J.W.)
| | - Md Farouq Mia
- Department of Applied Engineering and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
| | - Jasmine Wiggins
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (H.M.); (J.W.)
| | - Salil Desai
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (H.M.); (J.W.)
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
2
|
Ghora S, Chakraborty R, Bag S, Kumar MM, Retna Raj C. Transition metal phosphide-based oxygen electrocatalysts for aqueous zinc-air batteries. Chem Commun (Camb) 2025; 61:2636-2657. [PMID: 39791567 DOI: 10.1039/d4cc05498a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Electrically rechargeable zinc-air batteries (ZABs) are emerging as promising energy storage devices in the post-lithium era, leveraging the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) at the air cathodes. Efficient bifunctional oxygen electrocatalysts, capable of catalyzing both the ORR and OER, are essential for the operation of rechargeable ZABs. Traditional Pt- and RuO2/IrO2-based catalysts are not ideal, as they lack sufficient bifunctional ORR and OER activity, exhibit limited long-term durability, require high overpotentials and are expensive. In contrast, non-precious metal-based catalysts, including transition metal phosphides (TMPs), have gained significant attention for their promising bifunctional catalytic properties, making them attractive candidates for ZABs. Despite encouraging lab-scale achievements, translating these advancements into market-ready applications remains challenging due to suboptimal energy performance. Rationally engineered bifunctional TMPs hold great potential for overcoming these challenges and meeting the requirements of rechargeable ZABs. This feature article reviews recent progress in the development of TMP-based catalysts for ZABs, providing a comprehensive overview of ZAB fundamentals and strategies for catalyst design, synthesis, and engineering. A particular emphasis is placed on widely studied bifunctional Fe, Co, and Ni phosphides, along with approaches to enhance their catalytic performance. Key performance metrics are critically evaluated, including the potential gap (ΔE) between the ORR and the OER, specific capacity, peak power density, and charge-discharge cycling stability. Finally, this feature article discusses the challenges faced in TMP-based ZABs, proposes strategies to address these issues, and explores future directions for improving their rechargeability to meet the demands of commercial-scale energy storage technologies.
Collapse
Affiliation(s)
- Santanu Ghora
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| | - Rishika Chakraborty
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| | - Saheb Bag
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| | - Mopidevi Manikanta Kumar
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| | - C Retna Raj
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
3
|
DeBlock RH, Ford HO, Tighe ME, Rolison DR, Long JW. An alternate synthetic pathway to nanoscopic Li 2FeS 2 for energy storage. Chem Commun (Camb) 2024; 60:15004-15006. [PMID: 39600174 DOI: 10.1039/d4cc04748f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Lithium-rich iron sulphide, Li2FeS2, exhibits reversible charge-storage via both cationic and anionic sites, storing nearly 400 mA h g-1, but its synthesis is limited to solid-state methods that result in large primary particles. We describe an alternate solution-based, redox-mediated method to lithiate pyrite FeS2, ultimately forming nanoscale Li2FeS2.
Collapse
Affiliation(s)
- Ryan H DeBlock
- Surface Chemistry Branch, Code 6170, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| | - Hunter O Ford
- NRC Postdoctoral Associate at the U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Meghanne E Tighe
- American Society of Engineering Education Postdoctoral Associate at the U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Debra R Rolison
- Surface Chemistry Branch, Code 6170, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| | - Jeffrey W Long
- Surface Chemistry Branch, Code 6170, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| |
Collapse
|
4
|
Anil Kumar Y, Roy N, Ramachandran T, Assiri MA, Srinivasa Rao S, Moniruzzaman M, Joo SW. Revolutionizing energy storage: exploring the nanoscale frontier of all-solid-state batteries. Dalton Trans 2024; 53:12410-12433. [PMID: 38952249 DOI: 10.1039/d4dt01133c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Due to their distinctive security characteristics, all-solid-state batteries are seen as a potential technology for the upcoming era of energy storage. The flexibility of nanomaterials shows enormous potential for the advancement of all-solid-state batteries' exceptional power and energy storage capacities. These batteries might be applied in many areas such as large-scale energy storage for power grids, as well as in the creation of foldable and flexible electronics, and portable gadgets. The most difficult aspect of creating a comprehensive nanoscale all-solid-state battery assembly is the task of decreasing the particle size of the solid electrolyte while maintaining its excellent ionic conductivity. Materials possessing nanoscale structural features and a substantial electrochemically active surface area have the potential to significantly enhance power characteristics and the cycle life. This might bring about substantial changes to existing energy storage models. The primary objective of this research is to summarize the latest advancements in utilizing nanomaterials for energy harvesting in various all-solid-state battery assemblies. This study examines the most complex solid-solid interfaces of all-solid-state batteries, as well as feasible methods for implementing nanomaterials in such interfaces. Currently, there is significant attention on the necessity to develop electrode-solid electrolyte interfaces that exhibit nanoscale particle articulation and other characteristics related to the behavior of lithium ions.
Collapse
Affiliation(s)
- Yedluri Anil Kumar
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
| | - Nipa Roy
- Department of Physics, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tholkappiyan Ramachandran
- Department of Physics, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates
- Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore, 641 062, India
| | - Mohammed A Assiri
- Department of Chemistry, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Sunkara Srinivasa Rao
- Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Bowrampet, Hyderabad, 500 043, Telangana, India
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, Seongnam-1342, Republic of Korea.
| | - Sang Woo Joo
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
5
|
Wang R, Wang L, Liu R, Li X, Wu Y, Ran F. "Fast-Charging" Anode Materials for Lithium-Ion Batteries from Perspective of Ion Diffusion in Crystal Structure. ACS NANO 2024; 18:2611-2648. [PMID: 38221745 DOI: 10.1021/acsnano.3c08712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
"Fast-charging" lithium-ion batteries have gained a multitude of attention in recent years since they could be applied to energy storage areas like electric vehicles, grids, and subsea operations. Unfortunately, the excellent energy density could fail to sustain optimally while lithium-ion batteries are exposed to fast-charging conditions. In actuality, the crystal structure of electrode materials represents the critical factor for influencing the electrode performance. Accordingly, employing anode materials with low diffusion barrier could improve the "fast-charging" performance of the lithium-ion battery. In this Review, first, the "fast-charging" principle of lithium-ion battery and ion diffusion path in the crystal are briefly outlined. Next, the application prospects of "fast-charging" anode materials with various crystal structures are evaluated to search "fast-charging" anode materials with stable, safe, and long lifespan, solving the remaining challenges associated with high power and high safety. Finally, summarizing recent research advances for typical "fast-charging" anode materials, including preparation methods for advanced morphologies and the latest techniques for ameliorating performance. Furthermore, an outlook is given on the ongoing breakthroughs for "fast-charging" anode materials of lithium-ion batteries. Intercalated materials (niobium-based, carbon-based, titanium-based, vanadium-based) with favorable cycling stability are predominantly limited by undesired electronic conductivity and theoretical specific capacity. Accordingly, addressing the electrical conductivity of these materials constitutes an effective trend for realizing fast-charging. The conversion-type transition metal oxide and phosphorus-based materials with high theoretical specific capacity typically undergoes significant volume variation during charging and discharging. Consequently, alleviating the volume expansion could significantly fulfill the application of these materials in fast-charging batteries.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Lu Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Rui Liu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Xiangye Li
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Youzhi Wu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| |
Collapse
|
6
|
Javed M, Shah A, Nisar J, Shahzad S, Haleem A, Shah I. Nanostructured Design Cathode Materials for Magnesium-Ion Batteries. ACS OMEGA 2024; 9:4229-4245. [PMID: 38313505 PMCID: PMC10831983 DOI: 10.1021/acsomega.3c06576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 02/06/2024]
Abstract
Energy is undeniably one of the most fundamental requirements of the current generation. Solar and wind energy are sustainable and renewable energy sources; however, their unpredictability points to the development of energy storage systems (ESSs). There has been a substantial increase in the use of batteries, particularly lithium-ion batteries (LIBs), as ESSs. However, low rate capability and degradation due to electric load in long-range electric vehicles are pushing LIBs to their limits. As alternative ESSs, magnesium-ion batteries (MIBs) possess promising properties and advantages. Cathode materials play a crucial role in MIBs. In this regard, a variety of cathode materials, including Mn-based, Se-based, vanadium- and vanadium oxide-based, S-based, and Mg2+-containing cathodes, have been investigated by experimental and theoretical techniques. Results reveal that the discharge capacity, capacity retention, and cycle life of cathode materials need improvement. Nevertheless, maintaining the long-term stability of the electrode-electrolyte interface during high-voltage operation continues to be a hurdle in the execution of MIBs, despite the continuous research in this field. The current Review mainly focuses on the most recent nanostructured-design cathode materials in an attempt to draw attention to MIBs and promote the investigation of suitable cathode materials for this promising energy storage device.
Collapse
Affiliation(s)
- Mohsin Javed
- Department
of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Afzal Shah
- Department
of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Jan Nisar
- National
Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Suniya Shahzad
- Department
of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Abdul Haleem
- School
of Chemistry and Chemical Engineering, Jiangsu
University, Zhenjiang, Jiangsu 212013, China
| | - Iltaf Shah
- Department
of Chemistry, College of Science, United
Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Wang Y, Kang W, Sun D. Metal-Organic Assembly Strategy for the Synthesis of Layered Metal Chalcogenide Anodes for Na + /K + -Ion Batteries. CHEMSUSCHEM 2023; 16:e202202332. [PMID: 36823442 DOI: 10.1002/cssc.202202332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 05/20/2023]
Abstract
Layered transition metal chalcogenides (MX, M=Mo, W, Sn, V; X=S, Se, Te) have large ion transport channels and high specific capacity, making them promising for large-sized Na+ /K+ energy-storage technologies. Nevertheless, slow reaction kinetics and huge volume expansion will induce an undesirable electrochemical performance. Numerous efforts have been devoted to designing MX anodes and enhancing their electrochemical performance. Based on the metal-organic assembly strategy, nanostructural engineering, combination with carbon materials, and component regulation can be easily realized, which effectively boost the performance of MX anodes. In this Review, we present a comprehensive overview on the synthesis of MX nanostructure using the metal-organic assembly strategy, which can realize the design of MX nanostructures, based on self-sacrificial templates, host@guest tailored templates, post-modified layer and derivative templates. The preparation routes and structure evolution are mainly discussed. Then, Mo-, W-, Sn-, V-based chalcogenides used for Na+ /K+ energy storage are reviewed, and the relationship between the structure and the electrochemical performance, as well as the energy storage mechanism are emphasized. In addition, existing challenges and future perspectives are also presented.
Collapse
Affiliation(s)
- Yuyu Wang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P. R. China
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Wenpei Kang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| |
Collapse
|
8
|
Wang X, Wang Y, Wang J, Pan S, Lu Q, Wang HT, Xing D, Sun J. Pressure Stabilized Lithium-Aluminum Compounds with Both Superconducting and Superionic Behaviors. PHYSICAL REVIEW LETTERS 2022; 129:246403. [PMID: 36563263 DOI: 10.1103/physrevlett.129.246403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/08/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Superconducting and superionic behaviors have physically intriguing dynamic properties of electrons and ions, respectively, both of which are conceptually important and have great potential for practical applications. Whether these two phenomena can appear in the same system is an interesting and important question. Here, using crystal structure predictions and first-principle calculations combined with machine learning, we identify several stable Li-Al compounds with electride behavior under high pressure, and we find that the electronic density of states of some of the compounds has characteristics of the two-dimensional electron gas. Among them, we estimate that Li_{6}Al at 150 GPa has a superconducting transition temperature of around 29 K and enters a superionic state at a high temperature and wide pressure range. The diffusion in Li_{6}Al is found to be affected by an electride and attributed to the atomic collective motion. Our results indicate that alkali metal alloys can be effective platforms to study the abundant physical properties and their manipulation with pressure and temperature.
Collapse
Affiliation(s)
- Xiaomeng Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
- School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan, 750021, People's Republic of China
| | - Yong Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Junjie Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Shuning Pan
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Qing Lu
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Hui-Tian Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Dingyu Xing
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Jian Sun
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
| |
Collapse
|
9
|
Oxygen Vacancy-Modulated Zeolitic Li4Ti5O12 Microsphere Anode for Superior Lithium-Ion Battery. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Li X, Du X, Xu Y, Li J, Wang Y, Meng Y, Xiao D. Three-Dimensional Holey Graphene Enwrapped Li 3 V 2 (PO 4 ) 3 /N-Doped Carbon Cathode for High-Rate and Long-Life Li-Ion Batteries. CHEMSUSCHEM 2022; 15:e202201459. [PMID: 36103362 DOI: 10.1002/cssc.202201459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Monoclinic Li3 V2 (PO4 )3 is a promising cathode material for high-power Li-ion batteries. Herein, a three-dimensional holey graphene enwrapped Li3 V2 (PO4 )3 /N-doped carbon (LVPNCHG) nanocomposite has been successfully synthesized. The holes could be in-situ and directly introduced in graphene through H2 O2 chemical etching in the synthesis process, which could remarkably enhance the ion and electron transport and greatly improve the electrochemical performance of the LVPNCHG electrode: 78 mAh g-1 at 150 C, 86.1 % capacity retention over 2000 cycles at 10 C, and 96 % capacity retention over 500 cycles at 1 C under -20 °C. Moreover, in-situ distribution of relaxation time analysis was used to study LVPNCHG cathode during charge/discharge at 3.0-4.8 V, combined with in-situ X-ray diffraction measurement, and the results showed that a two-phase reaction mechanism was involved during the insertion of Li+ in the discharge process. Further demonstration of graphite//LVPNCHG full cell indicated great potential of the as-synthesized materials for practical application.
Collapse
Affiliation(s)
- Xiaopeng Li
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xingyu Du
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yulin Xu
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610207, P. R. China
| | - Jianming Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yujue Wang
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, P. R. China
| | - Yan Meng
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610207, P. R. China
| | - Dan Xiao
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610207, P. R. China
| |
Collapse
|
11
|
Guo S, Koketsu T, Hu Z, Zhou J, Kuo CY, Lin HJ, Chen CT, Strasser P, Sui L, Xie Y, Ma J. Mo-Incorporated Magnetite Fe 3 O 4 Featuring Cationic Vacancies Enabling Fast Lithium Intercalation for Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203835. [PMID: 36058653 DOI: 10.1002/smll.202203835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Transition metal oxides (TMOs) as high-capacity electrodes have several drawbacks owing to their inherent poor electronic conductivity and structural instability during the multi-electron conversion reaction process. In this study, the authors use an intrinsic high-valent cation substitution approach to stabilize cation-deficient magnetite (Fe3 O4 ) and overcome the abovementioned issues. Herein, 5 at% of Mo4+ -ions are incorporated into the spinel structure to substitute octahedral Fe3+ -ions, featuring ≈1.7 at% cationic vacancies in the octahedral sites. This defective Fe2.93 ▫0.017 Mo0.053 O4 electrode shows significant improvements in the mitigation of capacity fade and the promotion of rate performance as compared to the pristine Fe3 O4 . Furthermore, physical-electrochemical analyses and theoretical calculations are performed to investigate the underlying mechanisms. In Fe2.93 ▫0.017 Mo0.053 O4 , the cationic vacancies provide active sites for storing Li+ and vacancy-mediated Li+ migration paths with lower energy barriers. The enlarged lattice and improved electronic conductivity induced by larger doped-Mo4+ yield this defective oxide capable of fast lithium intercalation. This is confirmed by a combined characterization including electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), galvanostatic intermittent titration technique (GITT) and density functional theory (DFT) calculation. This study provides a valuable strategy of vacancy-mediated reaction to intrinsically modulate the defective structure in TMOs for high-performance lithium-ion batteries.
Collapse
Affiliation(s)
- Shasha Guo
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Toshinari Koketsu
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
- Department of Chemistry, Technical University of Berlin, 10623, Berlin, Germany
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187, Dresden, Germany
| | - Jing Zhou
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS), Shanghai, 201800, P. R. China
| | - Chang-Yang Kuo
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Hong-Ji Lin
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Chien-Te Chen
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Peter Strasser
- Department of Chemistry, Technical University of Berlin, 10623, Berlin, Germany
| | - Lijun Sui
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yu Xie
- International Center for Computational Method and Software & State Key Laboratory for Superhard Materials & Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Jiwei Ma
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| |
Collapse
|
12
|
Li G, Li Z, Cai Q, Yan C, Xing L, Li W. Construction of Low-Impedance and High-Passivated Interphase for Nickel-Rich Cathode by Low-Cost Boron-Containing Electrolyte Additive. CHEMSUSCHEM 2022; 15:e202200543. [PMID: 35394701 DOI: 10.1002/cssc.202200543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The nickel-rich cathode LiNi0.8 Co0.1 Mn0.1 O2 (NCM811) possesses the advantages of high reversible specific capacity and low cost, thus regarded as a promising cathode material for lithium-ion batteries (LIBs). However, the capacity of the NCM811 decays rapidly at high voltage due to the extremely unstable electrode/electrolyte interphase. The discharge capability at low temperature is also impaired because of the increasing interfacial impedance. Herein, a low-cost film-forming electrolyte additive with multi-function, phenylboronic acid (PBA), was employed to modify the interphasial properties of the NCM811 cathode. Theoretical calculation and experimental results showed that PBA constructed a highly conductive and steady cathode electrolyte interphase (CEI) film through preferential oxidation decomposition, which greatly improved the interfacial properties of the NCM811 cathode at room (25 °C) and low temperature (-10 °C). Specifically, the capacity retention of NCM811/Li cell was increased from 68 % to 87 % after 200 cycles with PBA additive. Moreover, the NCM811/Li cell with PBA additive delivered higher discharge capacity under -10 °C at 0.5 C (173.7 mAh g-1 vs. 111.1 mAh g-1 ). Based on the improvement of NCM811 interphasial properties by additive PBA, the capacity retention of NCM811/graphite full-cell was enhanced from 49 % to 65 % after 200 cycles.
Collapse
Affiliation(s)
- Guanjie Li
- Engineering Research Center of MTEES (Ministry of Education), Research Center of BMET (Guangdong Province), Engineering Lab. of OFMHEB (Guangdong Province), Key Lab. of ETESPG (GHEI), and, Innovative Platform for ITBMD (Guangzhou Municipality), South China Normal University, 510006, Guangzhou, P. R. China
| | - Zifei Li
- Engineering Research Center of MTEES (Ministry of Education), Research Center of BMET (Guangdong Province), Engineering Lab. of OFMHEB (Guangdong Province), Key Lab. of ETESPG (GHEI), and, Innovative Platform for ITBMD (Guangzhou Municipality), South China Normal University, 510006, Guangzhou, P. R. China
| | - Qinqin Cai
- Engineering Research Center of MTEES (Ministry of Education), Research Center of BMET (Guangdong Province), Engineering Lab. of OFMHEB (Guangdong Province), Key Lab. of ETESPG (GHEI), and, Innovative Platform for ITBMD (Guangzhou Municipality), South China Normal University, 510006, Guangzhou, P. R. China
| | - Chong Yan
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Lidan Xing
- Engineering Research Center of MTEES (Ministry of Education), Research Center of BMET (Guangdong Province), Engineering Lab. of OFMHEB (Guangdong Province), Key Lab. of ETESPG (GHEI), and, Innovative Platform for ITBMD (Guangzhou Municipality), South China Normal University, 510006, Guangzhou, P. R. China
- Guangzhou Institute of Energy Testing, 511447, Guangzhou, P. R. China
| | - Weishan Li
- Engineering Research Center of MTEES (Ministry of Education), Research Center of BMET (Guangdong Province), Engineering Lab. of OFMHEB (Guangdong Province), Key Lab. of ETESPG (GHEI), and, Innovative Platform for ITBMD (Guangzhou Municipality), South China Normal University, 510006, Guangzhou, P. R. China
- Guangzhou Institute of Energy Testing, 511447, Guangzhou, P. R. China
| |
Collapse
|
13
|
Liu LL, Li MY, Sun YH, Yang XY, Ma MX, Wang H, An MZ. A Facile Microwave Hydrothermal Method for Fabricating SnO2@C/Graphene Composite With Enhanced Lithium Ion Storage Properties. Front Chem 2022; 10:895749. [PMID: 35720986 PMCID: PMC9199493 DOI: 10.3389/fchem.2022.895749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
SnO2@C/graphene ternary composite material has been prepared via a double-layer modified strategy of carbon layer and graphene sheets. The size, dispersity, and coating layer of SnO2@C are uniform. The SnO2@C/graphene has a typical porous structure. The discharge and charge capacities of the initial cycle for SnO2@C/graphene are 2,210 mAh g−1 and 1,285 mAh g−1, respectively, at a current density of 1,000 mA g−1. The Coulombic efficiency is 58.60%. The reversible specific capacity of the SnO2@C/graphene anode is 955 mAh g−1 after 300 cycles. The average reversible specific capacity still maintains 572 mAh g−1 even at the high current density of 5 A g−1. In addition, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are performed to further investigate the prepared SnO2@C/graphene composite material by a microwave hydrothermal method. As a result, SnO2@C/graphene has demonstrated a better electrochemical performance.
Collapse
Affiliation(s)
- Li-Lai Liu
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, China
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, China
- Baotailong New Materials Co.,Ltd., Jixi, China
- *Correspondence: Li-Lai Liu, ; Mao-Zhong An,
| | - Ming-Yang Li
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, China
| | - Yi-Han Sun
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, China
| | - Xue-Ying Yang
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, China
| | - Min-Xuan Ma
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, China
| | - Hui Wang
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, China
| | - Mao-Zhong An
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, China
- *Correspondence: Li-Lai Liu, ; Mao-Zhong An,
| |
Collapse
|
14
|
Kim JG, Noh Y, Kim Y. Highly Reversible Li‐ion Full Batteries: Coupling Li‐rich Li1.20Ni0.28Mn0.52O2 Microcube Cathodes with Carbon‐decorated MnO Microcube Anodes. ChemElectroChem 2022. [DOI: 10.1002/celc.202200233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jong Guk Kim
- Korea Basic Science Institute Research Center for Materials Analysis KOREA, REPUBLIC OF
| | - Yuseong Noh
- Pohang University of Science and Technology Department of Chemical Engineering KOREA, REPUBLIC OF
| | - Youngmin Kim
- Korea Research Institute of Chemical Technology Chemical & Process Technology Division 141 Gajeongro, Yuseong 34114 Daejeon KOREA, REPUBLIC OF
| |
Collapse
|
15
|
Rodríguez-Seco C, Wang YS, Zaghib K, Ma D. Photoactive nanomaterials enabled integrated photo-rechargeable batteries. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:1443-1484. [PMID: 39635284 PMCID: PMC11502093 DOI: 10.1515/nanoph-2021-0782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 12/07/2024]
Abstract
The research interest in energy storage systems (e.g. batteries and capacitors) has been increasing over the last years. The rising need for electricity storage and overcoming the intermittent nature of renewable energy sources have been potent drivers of this increase. Solar energy is the most abundant renewable energy source. Thus, the combination of photovoltaic devices with energy storing systems has been pursued as a novel approach in applications such as electric vehicles and smart grids. Among all the possible configurations, the "direct" incorporation of photoactive materials in the storing devices is most attractive because it will enhance efficiency and reduce volume/weight compared to conventional systems comprised two individual devices. By generating and storing electricity in a singular device, integrated photo-rechargeable batteries offer a promising solution by directly storing electricity generated by sunlight during the day and reversibly releasing it at night time. They hold a sizable potential for future commercialization. This review highlights cutting-edge photoactive nanomaterials serving as photoelectrodes in integrated photobatteries. The importance and influence of their structure and morphology and relevant photocatalytic mechanisms will be focal points, being strong influencers of device performance. Different architecture designs and working principles are also included. Finally, challenges and limitations are discussed with the aim of providing an outlook for further improving the performance of integrated devices. We hope this up-to-date, in-depth review will act as a guide and attract more researchers to this new, challenging field, which has a bright application prospect.
Collapse
Affiliation(s)
- Cristina Rodríguez-Seco
- Institut National de la Recherche Scientifique (INRS)-Centre Énergie Materiaux et Telécommunications, 1650 Boulevard Lionel-Boulet, VarennesJ3X 1P7, Québec, Canada
| | - Yue-Sheng Wang
- Center of Excellence in Transportation Electrification and Energy Storage, Hydro Québec, 1806 Boulevard Lionel-Boulet, VarennesJ3X 1S1, Québec, Canada
| | - Karim Zaghib
- Department of Mining and Materials Engineering, McGill University, MontréalQC H3A 0C5, Canada
| | - Dongling Ma
- Institut National de la Recherche Scientifique (INRS)-Centre Énergie Materiaux et Telécommunications, 1650 Boulevard Lionel-Boulet, VarennesJ3X 1P7, Québec, Canada
| |
Collapse
|
16
|
Gurusamy L, Karuppasamy L, Anandan S, Liu CH, Wu JJ. Defective engineering of heterostructured N-Mo2C@MoO3-x electrode materials for the dual function of electrochemical sensing and supercapacitor applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Huang Y, Wang J, Shi Z, Wang H, Xue Z. Disulfide bond-embedded polyurethane solid polymer electrolytes with self-healing and shape-memory performance. Polym Chem 2022. [DOI: 10.1039/d2py00944g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this work, solid-state polymer electrolytes with both self-healing and shape-memory properties (SSSPEs) are designed and fabricated based on disulfide bond-containing polyurethane and poly(ethylene oxide) (PEO) segments.
Collapse
Affiliation(s)
- Yingjie Huang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jirong Wang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhen Shi
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Hongli Wang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhigang Xue
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
18
|
Huang Q, Ni S, Jiao M, Zhong X, Zhou G, Cheng HM. Aligned Carbon-Based Electrodes for Fast-Charging Batteries: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007676. [PMID: 33870632 DOI: 10.1002/smll.202007676] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Fast-charging batteries have attracted great attention, and are anticipated to charge electrical vehicles and consumer electronics to full-capacity in several minutes. However, commercial electrode materials in batteries generally have a limited rate performance and are difficult to be used in fast-charging batteries. Designing electrodes with an aligned structure is an effective way to shorten the ion transport path and improve the rate performance of a battery. The excellent electronic conductivity of carbon-based electrodes is another key factor for increasing the rate capability of rechargeable batteries. Therefore, aligned carbon-based electrodes (ACBEs) can significantly improve the power density by combining the advantages of an aligned structure and carbon-based materials. In this review, the mechanism, advantages, and challenges of ACBEs for fast-charging batteries are evaluated, and then the design and preparation methods of ACBEs based on their different dimensions are summarized, and their applications in different batteries are illustrated. Finally, the future development of ACBEs for fast-charging batteries is considered.
Collapse
Affiliation(s)
- Qikai Huang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Shuyan Ni
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Miaolun Jiao
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiongwei Zhong
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Guangmin Zhou
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hui-Ming Cheng
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
19
|
Feng S, Ma L, Lin J, Lu X, Xu L, Wu J, Yan X, Fan X. SnS nanoparticles anchored on nitrogen-doped carbon sheets derived from metal-organic-framework precursors as anodes with enhanced electrochemical sodium ions storage. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Carbon nanotubes-enhanced lithium storage capacity of recovered silicon/carbon anodes produced from solar-grade silicon kerf scrap. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Yu L, Lu L, Zhou X, Xu L, Alhalili Z, Wang F. Strategies for Fabricating High‐Performance Electrochemical Energy‐Storage Devices by MXenes. ChemElectroChem 2021. [DOI: 10.1002/celc.202100385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- LePing Yu
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - Lu Lu
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - XiaoHong Zhou
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - Lyu Xu
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - Zahrah Alhalili
- College of Sciences and Arts Shaqra University Sajir Riyadh Saudi Arabia
| | - FengJun Wang
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| |
Collapse
|