1
|
Liu J, Wang N, Liu S, Liu G. Catalytic Hydrodeoxygenation of Mixed Plastic Wastes into Sustainable Naphthenes. JACS AU 2024; 4:4361-4373. [PMID: 39610757 PMCID: PMC11600173 DOI: 10.1021/jacsau.4c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 11/30/2024]
Abstract
The chemical upcycling of plastic wastes by converting them into valuable fuels and chemicals represents a sustainable approach as opposed to landfilling and incineration. However, it encounters challenges in dealing with mixed plastic wastes due to their complex composition and sorting/cleaning costs. Here, we present a one-pot hydrodeoxygenation (HDO) method for converting mixed plastic wastes containing poly(ethylene terephthalate) (PET), polycarbonate (PC), and poly(phenylene oxide) (PPO) into sustainable naphthenes under mild reaction conditions. To facilitate this process, we developed a cost-effective, contaminant-tolerant, and reusable Ni/HZSM-5 bifunctional catalyst through an ethylene glycol-assisted impregnation method. The metallic Ni site plays a pivotal role in catalyzing C-O and C-C cleavages as well as hydrogenation reactions, while the acidic site of HZSM-5 facilitates dehydration and isomerization reactions. The collaboration between metal and acid dual sites on Ni/HZSM-5 enabled efficient HDO of a wide range of substrates, including bottles, textile fibers, pellets, sheets, CDs/DVDs, and plastics without cleaning or pigments removal and even their various mixtures, into naphthenes with a high yield up to 99% at 250 °C and 4 MPa H2 within 4-6 h. Furthermore, the metal-acid balance of the Ni/HZSM-5 catalyst is crucial for determining both HDO activity and product distribution. This proposed one-pot HDO process utilizing earth-abundant metal catalysts provides a promising avenue toward practical valorization of mixed plastic wastes.
Collapse
Affiliation(s)
- Jieyi Liu
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Nan Wang
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Sibao Liu
- Engineering
Research Center of Polymer Green Recycling of Ministry of Education,
Fujian Key Laboratory of Pollution Control & Resource Reuse, College
of Environmental and Resources, Fujian Normal
University, Fuzhou 350007, Fujian, China
| | - Guozhu Liu
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe
Lab of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
2
|
Qian Y, Roy TK, Valente DS, Cruz EM, Kozlowski MC, Della Libera A, Klippenstein SJ, Lester MI. Infrared Fingerprint and Unimolecular Decay Dynamics of the Hydroperoxyalkyl Intermediate (•QOOH) in Cyclopentane Oxidation. J Phys Chem A 2024; 128:9240-9250. [PMID: 39405476 DOI: 10.1021/acs.jpca.4c05677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A transient carbon-centered hydroperoxyalkyl intermediate (•QOOH) in the oxidation of cyclopentane is identified by IR action spectroscopy with time-resolved unimolecular decay to hydroxyl (OH) radical products that are detected by UV laser-induced fluorescence. Two nearly degenerate •QOOH isomers, β- and γ-QOOH, are generated by H atom abstraction of the cyclopentyl hydroperoxide precursor. Fundamental and first overtone OH stretch transitions and combination bands of •QOOH are observed and compared with anharmonic frequencies computed by second-order vibrational perturbation theory. An OH stretch transition is also observed for a conformer arising from torsion about a low-energy CCOO barrier. Definitive identification of the β-QOOH isomer relies on its significantly lower transition state (TS) barrier to OH products, which results in rapid unimolecular decay and near unity branching to OH products. A benchmarking approach is utilized to compute high-accuracy stationary point energies, most importantly TS barriers, for cyclopentane oxidation (C5H9O2), building on higher level reference calculations for ethane oxidation (C2H5O2). The experimental OH product appearance rates are compared with computed statistical microcanonical rates using RRKM theory, including heavy-atom tunneling, thereby validating the computed TS barrier. The results are extended to thermal unimolecular decay rate constants at temperatures and pressures relevant to cyclopentane combustion via master-equation modeling. The various torsional and ring puckering states of the wells and transition states are explicitly considered in these calculations.
Collapse
Affiliation(s)
- Yujie Qian
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103-6323, United States
| | - Tarun Kumar Roy
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103-6323, United States
| | - Dylan S Valente
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103-6323, United States
| | - Emmanuel Moya Cruz
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103-6323, United States
| | - Marisa C Kozlowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103-6323, United States
| | - Andrea Della Libera
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, MI, Milano 20133, Italy
| | - Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103-6323, United States
| |
Collapse
|
3
|
Chang CF, Paragian K, Sadula S, Rangarajan S, Vlachos DG. Sustainable Aviation Fuel Molecules from (Hemi)Cellulose: Computational Insights into Synthesis Routes, Fuel Properties, and Process Chemistry Metrics. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:12927-12937. [PMID: 39211384 PMCID: PMC11351710 DOI: 10.1021/acssuschemeng.4c04199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Production of sustainable aviation fuels (SAFs) can significantly reduce the aviation industry's carbon footprint. Current pathways that produce SAFs in significant volumes from ethanol and fatty acids can be costly, have a relatively high carbon intensity (CI), and impose sustainability challenges. There is a need for a diversified approach to reduce costs and utilize more sustainable feedstocks effectively. Here, we map out catalytic synthesis routes to convert furanics derived from the (hemi)cellulosic biomass to alkanes and cycloalkanes using automated network generation with RING and semiempirical thermochemistry calculations. We find >100 energy-dense C8-C16 alkane and cycloalkane SAF candidates over 300 synthesis routes; the top three are 2-methyl heptane, ethyl cyclohexane, and propyl cyclohexane, although these are relatively short. The shortest, least endothermic process chemistry involves C-C coupling, oxygen removal, and hydrogen addition, with dehydracyclization of the heterocyclic oxygens in the furan ring being the most endothermic step. The global warming potential due to hydrogen use and byproduct CO2 is typically 0.7-1 kg CO2/kg SAF product; the least CO2 emitting routes entail making larger molecules with fewer ketonization, hydrogenation, and hydrodeoxygenation steps. The large number of SAF candidates highlights the rich potential of furanics as a source of SAF molecules. However, the structural dissimilarity between reactants and target products precludes pathways with fewer than six synthetic steps, thus necessitating intensified processes, integrating multiple reaction steps in multifunctional catalytic reactors.
Collapse
Affiliation(s)
- Chin-Fei Chang
- Department
of Chemical and Biomolecular Engineering, Lehigh University, 124 E Morton Street, Bethlehem, Pennsylvania 18015, United States
| | - Kristin Paragian
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19711, United States
- Catalysis
Center for Energy Innovation and Delaware Energy Institute, 221 Academy St., Newark, Delaware 19716, United States
| | - Sunitha Sadula
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19711, United States
- Catalysis
Center for Energy Innovation and Delaware Energy Institute, 221 Academy St., Newark, Delaware 19716, United States
| | - Srinivas Rangarajan
- Department
of Chemical and Biomolecular Engineering, Lehigh University, 124 E Morton Street, Bethlehem, Pennsylvania 18015, United States
| | - Dionisios G. Vlachos
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19711, United States
- Catalysis
Center for Energy Innovation and Delaware Energy Institute, 221 Academy St., Newark, Delaware 19716, United States
| |
Collapse
|
4
|
Yang M, Wang J. Comprehensive Multipath Variational Kinetics Study on Hydrogen Abstraction Reactions from Three Typical Dimethylcyclohexane Isomers by Hydroxyl Radicals: from the Electronic Structure to Model Applications. J Phys Chem A 2024; 128:4517-4531. [PMID: 38804972 DOI: 10.1021/acs.jpca.4c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cycloalkanes serve as an important class of chemical components in both fossil and alternative transportation fuels and have attracted considerable attention from the combustion community. Hydrogen abstractions from cycloalkanes by hydroxyl radicals initiate the fuel decomposition process and trigger off the subsequent chain reactions and thus play an important role in both combustion and atmospheric chemistry. The target of this study is to fill the vacancy in kinetics data toward the H-abstraction reactions by hydroxyl radical from three typical dimethylcyclohexane isomers through first-principles and direct dynamics. The rate constants involving 18 elementary reactions in total were accurately determined by the multipath canonical variational transition state theory with the multidimensional small-curvature correction for tunneling (MP-CVT/SCT), over a broad temperature range of 200-2000 K. The significant roles of multistructural torsional anharmonicity and recrossing effects were stressed per abstraction site, while the quantum tunneling effect was found to be slight at temperatures of interest in combustion. The discrepancies observed among different reaction systems at a similar abstraction site highlight the fuel molecular effects on site-specific rate constants. The comparison results of total rate constants given by different dynamics approaches prove the importance of considering the torsional anharmonicity, recrossing, and tunneling effects, and the robust feature of the simplified MS-CVT/SCT. The calculated total constants for dimethylcyclohexane isomers by OH are consistent with those measured for methylcyclohexane and 1,4-dimethylcyclohexane at low temperatures. The branching ratio analysis confirms the predominant role of the tertiary abstraction at low-to-intermediate temperatures and its growing competition with distinct secondary abstractions as temperature increases. The calculated rate constants were eventually fitted into the analytical expressions and incorporated into the kinetic models to learn about the influences on modeling performance.
Collapse
Affiliation(s)
- Mo Yang
- National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Juan Wang
- National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| |
Collapse
|
5
|
Li G, Wang R, Pang J, Wang A, Li N, Zhang T. Production of Renewable Hydrocarbon Biofuels with Lignocellulose and Its Derivatives over Heterogeneous Catalysts. Chem Rev 2024; 124:2889-2954. [PMID: 38483065 DOI: 10.1021/acs.chemrev.2c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
In recent years, the issues of global warming and CO2 emission reduction have garnered increasing global attention. In the 21st Conference of the Parties (convened in Paris in 2015), 179 nations and the European Union signed a pivotal agreement to limit the global temperature increase of this century to well below 2 K above preindustrial levels. To fulfill this objective, extensive research has been conducted to use renewable energy sources as potential replacements for traditional fossil fuels. Among them, the production of hydrocarbon transportation fuels from CO2-neutral and renewable biomass has proven to be a particularly promising solution due to its compatibility with existing infrastructure. This review systematically summarizes research progress in the synthesis of liquid hydrocarbon biofuels from lignocellulose during the past two decades. Based on the chemical structure (including n-paraffins, iso-paraffins, aromatics, and cycloalkanes) of hydrocarbon transportation fuels, the synthesis pathways of these biofuels are discussed in four separate sections. Furthermore, this review proposes three guiding principles for the design of practical hydrocarbon biofuels, providing insights into future directions for the development of viable biomass-derived liquid fuels.
Collapse
Affiliation(s)
- Guangyi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ran Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Sinopec Beijing Research Institute of Chemical Industry Yanshan Branch, Beijing 102500, China
| | - Jifeng Pang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ning Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
6
|
Touazi AA, Boussaadia AEN, Didaoui S, Nasrallah N, Chelghoum F, Benziane M. Measurement and Modelling of Excess Molar Volume and Excess Enthalpy of n-tridecane or n-tetradecanewithdecalin By Application of PFP Theory.. [DOI: 10.21203/rs.3.rs-3175305/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
The experimental measurement of density and enthalpy of mixture for two binary liquid mixtures of n-tridecane or n-tetradecane with decalin was reported in this paper. The measurements were conducted at a temperature range of 293.15 to 323.15K and at 303.15K using calorimeter C80. The mixtures were analyzed at various proportions, including the entire composition range and infinitely diluted. The excess molar volume (VE) and excess molar enthalpy (HE) of mixtures were calculated and fitted using the Redlich-Kister equation. The paper observed the expansion phenomenon for the VE at all temperatures, including over the entire composition range and infinitely diluted. Additionally, the HE exhibited endothermic behavior at the studied temperature range and composition range. The Prigogine-Flory-Patterson (PFP) theory was utilized to predict both thermodynamic properties, namely the VE and HE. The results obtained using the PFP theory were compared with those obtained using the Treszczanowicz and Benson association (TB) model for VE and with the NRTL, Wilson, and Flory models for HE. The PFP model, which employed a single fitted parameter to describe VE, demonstrated satisfactory performance in predicting VE. Conversely, the Treszczanowicz and Benson association (TB) model yielded relatively poor results in fitting VE. However, the NRTL, Wilson, PFP, and Flory models exhibited good performance in predicting HE.
Collapse
Affiliation(s)
| | | | - Saeda Didaoui
- University of Sciences and Technology Houari Boumediene
| | | | | | | |
Collapse
|
7
|
Vajravel S, Cid Gomes L, Rana A, Ottosson H. Toward combined photobiological-photochemical formation of kerosene-type biofuels: which small 1,3-diene photodimerizes most efficiently? Photochem Photobiol Sci 2023:10.1007/s43630-023-00418-0. [PMID: 37101106 DOI: 10.1007/s43630-023-00418-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023]
Abstract
A transition from fossil- to bio-based hydrocarbon fuels is required to reduce greenhouse gas emissions; yet, traditional biomass cultivation for biofuel production competes with food production and impacts negatively on biodiversity. Recently, we reported a proof-of-principle study of a two-step photobiological-photochemical approach to kerosene biofuels in which a volatile hydrocarbon (isoprene) is produced by photosynthetic cyanobacteria, followed by its photochemical dimerization into C10 hydrocarbons. Both steps can utilize solar irradiation. Here, we report the triplet state (T1)-sensitized photodimerization of a broader set of small 1,3-dienes to identify which structural features lead to rapid photodimerization. Neat 1,3-cyclohexadiene gave the highest yield (93%) after 24 h of irradiation at 365 nm, followed by isoprene (66%). The long triplet lifetime of 1,3-cyclohexadiene, which is two orders of magnitude longer than those of acyclic dienes, is key to its high photoreactivity and stem from its planar T1 state structure. In contrast, while isoprene is conformationally flexible, it has both photochemical and photobiological advantages, as it is the most reactive among the volatile 1,3-dienes and it can be produced by cyanobacteria. Finally, we explored the influence of solvent viscosity, diene concentration, and triplet sensitizer loading on the photodimerization, with a focus on conditions that are amenable when the dienes are produced photobiologically. Our findings should be useful for the further development of the two-step photobiological-photochemical approach to kerosene biofuels.
Collapse
Affiliation(s)
- Sindhujaa Vajravel
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 751 20, Uppsala, Sweden
| | - Leandro Cid Gomes
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 751 20, Uppsala, Sweden
| | - Anup Rana
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 751 20, Uppsala, Sweden
| | - Henrik Ottosson
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 751 20, Uppsala, Sweden.
| |
Collapse
|
8
|
Abstract
Combustion is a reactive oxidation process that releases energy bound in chemical compounds used as fuels─energy that is needed for power generation, transportation, heating, and industrial purposes. Because of greenhouse gas and local pollutant emissions associated with fossil fuels, combustion science and applications are challenged to abandon conventional pathways and to adapt toward the demand of future carbon neutrality. For the design of efficient, low-emission processes, understanding the details of the relevant chemical transformations is essential. Comprehensive knowledge gained from decades of fossil-fuel combustion research includes general principles for establishing and validating reaction mechanisms and process models, relying on both theory and experiments with a suite of analytic monitoring and sensing techniques. Such knowledge can be advantageously applied and extended to configure, analyze, and control new systems using different, nonfossil, potentially zero-carbon fuels. Understanding the impact of combustion and its links with chemistry needs some background. The introduction therefore combines information on exemplary cultural and technological achievements using combustion and on nature and effects of combustion emissions. Subsequently, the methodology of combustion chemistry research is described. A major part is devoted to fuels, followed by a discussion of selected combustion applications, illustrating the chemical information needed for the future.
Collapse
|
9
|
Shi N, Zhu T, Zhang H, Huang H, Zhou L, Liu Y, Shu R. One-Pot Conversion of Cellulose into 2,5-Hexanedione in H 2O-Tetrahydrofuran Co-Solvents. ACS OMEGA 2023; 8:11574-11582. [PMID: 37008153 PMCID: PMC10061601 DOI: 10.1021/acsomega.3c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Catalytic conversion of cellulose into the novel platform molecule 2,5-hexanedione (HXD) is regarded as one feasible approach for high-value utilization of biomass resources. Here, we reported one efficient way of one-pot conversion of cellulose into HXD with high yield of 80.3% in H2O and tetrahydrofuran (THF) mixture within Al2(SO4)3 combined with Pd/C as a catalyst. In the catalytic reaction system, Al2(SO4)3 could catalyze the conversion of cellulose into 5-hydroxymethylfurfural (HMF), and Pd/C combined with Al2(SO4)3 could catalyze the hydrogenolysis of HMF into furanic intermediates such as 5-methylfurfuryl alcohol and 2,5-dimethylfuran (DMF) without causing over-hydrogenation of these furanic intermediates. These furanic intermediates were finally transformed into HXD catalyzed by Al2(SO4)3. Besides, the H2O/THF ratio could significantly influence the reactivity of the hydrolytic furanic ring-opening of the furanic intermediates. The catalytic system also showed excellent performance on the conversion of other carbohydrates (glucose and sucrose) into HXD.
Collapse
Affiliation(s)
- Ning Shi
- School
of Chemical Engineering, Guizhou Institute
of Technology, Guiyang 550003, China
| | - Tianlang Zhu
- School
of Chemical Engineering, Guizhou Institute
of Technology, Guiyang 550003, China
| | - Hongyan Zhang
- School
of Chemical Engineering, Guizhou Institute
of Technology, Guiyang 550003, China
| | - Hongsheng Huang
- School
of Chemical Engineering, Guizhou Institute
of Technology, Guiyang 550003, China
| | - Liang Zhou
- School
of Chemical Engineering, Guizhou Institute
of Technology, Guiyang 550003, China
| | - Ying Liu
- School
of Chemical Engineering, Guizhou Institute
of Technology, Guiyang 550003, China
| | - Riyang Shu
- Guangdong
Provincial Key Laboratory of Functional Soft Condensed Matter, School
of Materials and Energy, Guangdong University
of Technology, Guangzhou 510006, China
| |
Collapse
|
10
|
Keller CL, Doppalapudi KR, Woodroffe JD, Harvey BG. Solvent-free dehydration, cyclization, and hydrogenation of linalool with a dual heterogeneous catalyst system to generate a high-performance sustainable aviation fuel. Commun Chem 2022; 5:113. [PMID: 36697844 PMCID: PMC9814387 DOI: 10.1038/s42004-022-00725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/19/2022] [Indexed: 02/01/2023] Open
Abstract
The development of efficient catalytic methods for the synthesis of bio-based, full-performance jet fuels is critical for limiting the impacts of climate change while enabling a thriving modern society. To help address this need, here, linalool, a terpene alcohol that can be produced via fermentation of biomass sugars, was dehydrated, cyclized, and hydrogenated in a one-pot reaction under moderate reaction conditions. This sequence produced a biosynthetic fuel mixture primarily composed of 1-methyl-4-isopropylcyclohexane (p-menthane) and 2,6-dimethyloctane (DMO). The reaction was promoted by a catalyst composed of commercial Amberlyst-15, H+ form, and 10% Pd/C. Two other terpenoid substrates (1,8-cineole and 1,4-cineole) were subjected to the same conditions and excellent conversion to high purity p-menthane was observed. The fuel mixture derived from linalool exhibits a 1.7% higher gravimetric heat of combustion and 66% lower kinematic viscosity at -20 °C compared to the limits for conventional jet fuel. These properties suggest that isomerized hydrogenated linalool (IHL) can be blended with conventional jet fuel or synthetic paraffinic kerosenes to deliver high-performance sustainable aviation fuels for commercial and military applications.
Collapse
Affiliation(s)
- C. Luke Keller
- grid.482248.00000 0004 0511 8606Research Department, Chemistry Division, US NAVY, NAWCWD, China Lake, CA 93555 USA
| | - Karan R. Doppalapudi
- grid.482248.00000 0004 0511 8606Research Department, Chemistry Division, US NAVY, NAWCWD, China Lake, CA 93555 USA
| | - Josanne-Dee Woodroffe
- grid.482248.00000 0004 0511 8606Research Department, Chemistry Division, US NAVY, NAWCWD, China Lake, CA 93555 USA
| | - Benjamin G. Harvey
- grid.482248.00000 0004 0511 8606Research Department, Chemistry Division, US NAVY, NAWCWD, China Lake, CA 93555 USA
| |
Collapse
|
11
|
Biesemans B, De Clercq J, Stevens CV, Thybaut JW, Lauwaert J. Recent advances in amine catalyzed aldol condensations. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2048570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bert Biesemans
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles, and Chemical Engineering, Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Jeriffa De Clercq
- Industrial Catalysis and Adsorption Technology (INCAT), Department of Materials, Textiles, and Chemical Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Christian V. Stevens
- SynBioC Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Joris W. Thybaut
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles, and Chemical Engineering, Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Jeroen Lauwaert
- Industrial Catalysis and Adsorption Technology (INCAT), Department of Materials, Textiles, and Chemical Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| |
Collapse
|
12
|
Dutta S, Bhat NS. Catalytic Transformation of Biomass-Derived Furfurals to Cyclopentanones and Their Derivatives: A Review. ACS OMEGA 2021; 6:35145-35172. [PMID: 34984249 PMCID: PMC8717399 DOI: 10.1021/acsomega.1c05861] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 05/08/2023]
Abstract
Furfural (FF) and 5-(hydroxymethyl)furfural (HMF) are well-recognized biomass-derived chemical building blocks with established applications and markets for several of their derivatives. Attaining a wide spectrum of petrochemicals is the primary target of a biorefinery that employs FF and HMF as the chemical feedstock. In this regard, cyclopentanone (CPN) is a crucial petrochemical intermediate used for synthesizing a diverse range of compounds with immense commercial prospects. The hydrogenative ring rearrangement of FF to CPN in an aqueous medium under catalytic hydrogenation conditions was first reported in 2012, whereas the first report on the catalytic conversion of HMF to 3-(hydroxymethyl)cyclopentanone (HCPN) was published in 2014. Over the past decade, several investigations have been undertaken in converting FF and HMF to CPN and HCPN, respectively. The research studies aimed to improve the scalability, selectivity, environmental footprint, and cost competitiveness of the process. A blend of theoretical and experimental studies has helped to develop efficient, inexpensive, and recyclable heterogeneous catalysts that work under mild reaction conditions while providing excellent yields of CPN and HCPN. The time is ripe to consolidate the data in this area of research and analyze them rigorously in a review article. This work will assist both beginners and experts of this field in acknowledging the accomplishments to date, recognize the challenges, and strategize the way forward.
Collapse
Affiliation(s)
- Saikat Dutta
- Department of Chemistry, National
Institute of Technology Karnataka, Mangalore 575025, Karnataka, India
| | - Navya Subray Bhat
- Department of Chemistry, National
Institute of Technology Karnataka, Mangalore 575025, Karnataka, India
| |
Collapse
|
13
|
Takagaki A, Obata W, Ishihara T. Oxidative Conversion of Glucose to Formic Acid as a Renewable Hydrogen Source Using an Abundant Solid Base Catalyst. ChemistryOpen 2021; 10:954-959. [PMID: 34236148 PMCID: PMC8485787 DOI: 10.1002/open.202100074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
Formic acid is one of the most desirable liquid hydrogen carriers. The selective production of formic acid from monosaccharides in water under mild reaction conditions using solid catalysts was investigated. Calcium oxide, an abundant solid base catalyst available from seashell or limestone by thermal decomposition, was found to be the most active of the simple oxides tested, with formic acid yields of 50 % and 66 % from glucose and xylose, respectively, in 1.4 % H2 O2 aqueous solution at 343 K for 30 min. The main reaction pathway is a sequential formation of formic acid from glucose by C-C bond cleavage involving aldehyde groups in the acyclic form. The reaction also involves base-catalyzed aldose-ketose isomerization and retroaldol reaction, resulting in the formation of fructose and trioses including glyceraldehyde and dihydroxyacetone. These intermediates were further decomposed into formic acid or glycolic acid. The catalytic activity remained unchanged for further reuse by a simple post-calcination.
Collapse
Affiliation(s)
- Atsushi Takagaki
- Department of Applied ChemistryFaculty of EngineeringKyushu University744 Motooka, Nishi-kuFukuoka819-0395Japan
- International Institute for Carbon-Neutral Energy Research (WPI−ICNER)Kyushu University744 Motooka, Nishi-kuFukuoka819-0395Japan
| | - Wataru Obata
- Department of Applied ChemistryFaculty of EngineeringKyushu University744 Motooka, Nishi-kuFukuoka819-0395Japan
| | - Tatsumi Ishihara
- Department of Applied ChemistryFaculty of EngineeringKyushu University744 Motooka, Nishi-kuFukuoka819-0395Japan
- International Institute for Carbon-Neutral Energy Research (WPI−ICNER)Kyushu University744 Motooka, Nishi-kuFukuoka819-0395Japan
- Department of Automotive ScienceGraduate School of Integrated Frontier ScienceKyushu University744 Motooka, Nishi-kuFukuoka819-0395Japan
| |
Collapse
|
14
|
Ma C, Shi C, Liu Y, Pan L, Zhang X, Zou JJ. Synthesis and Performance of Strained Multicyclic Hydrocarbons as Highly Potential High-Energy-Density Fuels. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chi Ma
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yakun Liu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|