1
|
Amiri-Zirtol L, Gholami A. Innovative synthesis of nano-magnetic bio-organocatalysts from red mud waste for green polyhydroquinoline derivatives synthesis. Sci Rep 2024; 14:26143. [PMID: 39477947 PMCID: PMC11525998 DOI: 10.1038/s41598-024-74292-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
The imperative of transforming waste materials into valuable nanomaterials via ecological recycling has emerged as a pivotal avenue for environmental stewardship. This research contributes to the "greening" of global chemical processes by introducing a magnetic biocatalyst derived from red mud waste. Emphasizing the use of glutamic acid as the second most effective step in obtaining a green catalyst is a key focus of this work. Leveraging cost-effective materials such as FeSO4, amino acid, and Fe2O3 isolated from red mud enhances the economic viability of the synthesized catalyst. Characterization of the newly developed nano-magnetic bio-organocatalysts was conducted using advanced spectroscopic techniques, including Fourier transform infrared (FT-IR), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Brunauer-Emmett-Teller (BET), energy-dispersive X-ray spectroscopy (EDX), mapping, thermogravimetric analysis (TGA), and vibrating-sample magnetometers (VSM). The catalytic activity of Fe3O4@SiO2@(CH2)3@Gl was examined in the one-pot synthesis of polyhydroquinolines, showcasing short reaction times, high efficiency, ease of catalyst separation, and the potential for catalyst recycling as salient features of this work. This study pioneers the utilization of red mud waste for eco-friendly nanomaterial synthesis and underscores the economic and environmental significance of incorporating glutamic acid as a crucial element in the catalyst synthesis process.
Collapse
Affiliation(s)
- Leila Amiri-Zirtol
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Li S, Nakahara S, Adachi T, Murata T, Takaishi K, Ema T. Skeletal Formation of Carbocycles with CO 2: Selective Synthesis of Indolo[3,2- b]carbazoles or Cyclophanes from Indoles, CO 2, and Phenylsilane. J Am Chem Soc 2024; 146:14935-14941. [PMID: 38722086 DOI: 10.1021/jacs.4c04097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The catalytic reactions of indoles with CO2 and phenylsilane afforded indolo[3,2-b]carbazoles, where the fused benzene ring was constructed by forming two C-H bonds and four C-C bonds with two CO2 molecules via deoxygenative conversions. Nine-membered cyclophanes made up of three indoles and three CO2 molecules were also obtained, where the cyclophane framework was constructed by forming six C-H bonds and six C-C bonds. These multicomponent cascade reactions giving completely different carbocycles were switched simply by choosing the solvent, acetonitrile or ethyl acetate.
Collapse
Affiliation(s)
- Sha Li
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Shoko Nakahara
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Taishin Adachi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Takumi Murata
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| |
Collapse
|
3
|
Nakaoka K, Guo C, Saiki Y, Furukawa S, Ema T. Synthesis of Enamines, Aldehydes, and Nitriles from CO 2: Scope of the One-Pot Strategy via Formamides. J Org Chem 2023; 88:15444-15451. [PMID: 36099541 DOI: 10.1021/acs.joc.2c01666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetrabutylammonium acetate (TBAA) and Cu(OAc)2 worked as a binary catalytic system for the solvent-free N-formylation of amines with CO2 and PhSiH3. This catalysis making C-H and C-N bonds with CO2 was coupled with the C-C bond-forming reactions to achieve the one-pot synthesis of enamines, aldehydes, and nitriles. The X-ray crystal structure of a Cu(OAc)2-TBAA complex was also revealed.
Collapse
Affiliation(s)
- Koichi Nakaoka
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Chao Guo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Yuta Saiki
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Shin Furukawa
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
4
|
Akhtar N, Chauhan M, Gupta P, Antil N, Manna K. A supported pyridylimine-cobalt catalyst for N-formylation of amines using CO 2. Dalton Trans 2023; 52:15384-15393. [PMID: 37043211 DOI: 10.1039/d3dt00058c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
N-Formylation of amines with CO2 as a cheap and non-toxic C1-feedstock and hydrosilane reducing agent is a practical and environment friendly method to synthesize formamides. This study describes an efficient and chemoselective mono-N-formylation of amines using CO2 and phenylsilane under mild conditions using a porous metal-organic framework (MOF)-supported single-site cobalt catalyst (pyrim-UiO-Co). The pyrim-UiO-Co MOF has a UiO-topology, and its organic linkers bear a pyridylimine ligated Co catalytic moiety. A wide range of aliphatic and aromatic amines are transformed into desired N-formamides in moderate to excellent yields under 1-5 bar CO2. Pyrim-UiO-Co is tolerant to various functional groups and could be recycled and reused at least 10 times. Mechanistic investigation using kinetic, spectroscopic and density functional theory studies suggests that the formylation of benzylamine proceeds sequentially via oxidative addition of PhSiH3 and CO2 insertion, followed by a turn-over limiting reaction with an amine. Our work highlights the importance of MOF-based Earth-abundant metal catalysts for the practical and eco-friendly synthesis of fine chemicals using cheap feedstocks.
Collapse
Affiliation(s)
- Naved Akhtar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Manav Chauhan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Poorvi Gupta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Neha Antil
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
5
|
Vallejo Narváez WE, Vera de la Garza CG, Fomine S. Enhancing CO 2 reduction through the catalytic effect of a novel silicon haeckelite-inspired 2D material. Phys Chem Chem Phys 2023; 25:25862-25870. [PMID: 37725098 DOI: 10.1039/d3cp02783j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
We propose a novel 2D material based on silicon haeckelite (Hck), whose structure contains a silicon atom arranged in a periodic pattern of pentagons and heptagons. Stacking the two layers gives rise to a planar geometry of the layers that compose it. This new structure presents a semiconductor character with a band gap of 0.17 eV. Furthermore, we studied CO2 reduction using molecular hydrogen to form formic acid, carbon monoxide, formaldehyde, methanol, and methane. All these have been studied theoretically at the Grimme D3BJ corrected TPSS/def2-SVP level. A massive biflake containing 132 Si atoms was used to model the Hck surface. According to the results, CO2 capture with Hck is a spontaneous step; in contrast, the same process for silicene mono- and bi-flakes studied previously was endergonic. After the capture of CO2, the addition of H2 to the substrate passes through an intermediate containing a Si-H bond. The formation of Si-H intermediates is the origin of the catalytic effect, facilitating H2 dissociation and acting as the hydrogen atom donor for the substrate. These intermediates are transformed by adding hydrogen atoms and losing water molecules, producing formic acid and formaldehyde as the most probable products, with rate-controlling steps of 29.2 and 27 kcal mol-1, whose values were less than those exhibited by the silicene biflake. This means that the silicon haeckelite biflake presents better catalytic activity than the silicene biflake. The results show that the novel 2D silicon hackelite material has remarkable potential for CO2 capture and reduction. The theoretical analysis of this innovative 2D structure provides valuable insights into the potential applications of silicene-based materials.
Collapse
Affiliation(s)
- Wilmer Esteban Vallejo Narváez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, CU, Coyoacán, 04510 Ciudad de Mexico, Mexico.
| | - Cesar Gabriel Vera de la Garza
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, CU, Coyoacán, 04510 Ciudad de Mexico, Mexico.
| | - Serguei Fomine
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, CU, Coyoacán, 04510 Ciudad de Mexico, Mexico.
| |
Collapse
|
6
|
He C, Zou YH, Si DH, Chen ZA, Liu TF, Cao R, Huang YB. A porous metal-organic cage liquid for sustainable CO 2 conversion reactions. Nat Commun 2023; 14:3317. [PMID: 37286561 DOI: 10.1038/s41467-023-39089-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023] Open
Abstract
Porous liquids are fluids with the permanent porosity, which can overcome the poor gas solubility limitations of conventional porous solid materials for three phase gas-liquid-solid reactions. However, preparation of porous liquids still requires the complicated and tedious use of porous hosts and bulky liquids. Herein, we develop a facile method to produce a porous metal-organic cage (MOC) liquid (Im-PL-Cage) by self-assembly of long polyethylene glycol (PEG)-imidazolium chain functional linkers, calixarene molecules and Zn ions. The Im-PL-Cage in neat liquid has permanent porosity and fluidity, endowing it with a high capacity of CO2 adsorption. Thus, the CO2 stored in an Im-PL-Cage can be efficiently converted to the value-added formylation product in the atmosphere, which far exceeds the porous MOC solid and nonporous PEG-imidazolium counterparts. This work offers a new method to prepare neat porous liquids for catalytic transformation of adsorbed gas molecules.
Collapse
Affiliation(s)
- Chang He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
- College of Ecological Environment and Urban Construction, Fujian University of Technology, 350118, Fuzhou, Fujian, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yu-Huang Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
| | - Duan-Hui Si
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
| | - Zi-Ao Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Tian-Fu Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China.
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, Fujian, P. R. China.
| | - Yuan-Biao Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China.
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.
| |
Collapse
|
7
|
Vallejo Narváez WE, de la Garza CGV, Rodríguez LDS, Fomine S. The CO
2
Reduction Reaction Mechanism on Silicene Nanoflakes. A Theoretical Perspective. ChemistrySelect 2023. [DOI: 10.1002/slct.202203484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Wilmer E. Vallejo Narváez
- Department of Polymers Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Apartado Postal 70–360, CU Coyoacán 04510 Ciudad de México México
| | - Cesar Gabriel Vera de la Garza
- Department of Polymers Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Apartado Postal 70–360, CU Coyoacán 04510 Ciudad de México México
| | - Luis Daniel Solís Rodríguez
- Department of Polymers Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Apartado Postal 70–360, CU Coyoacán 04510 Ciudad de México México
| | - Serguei Fomine
- Department of Polymers Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Apartado Postal 70–360, CU Coyoacán 04510 Ciudad de México México
| |
Collapse
|
8
|
Zwitterionic cellular polymer enabled reductive fixation of CO2 for N-methylation of amines. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
9
|
Crown Ether as Organocatalyst for Reductive Upgrading of CO2 to N-Containing Benzoheterocyclics and N-Formamides. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Wang R, Nakao K, Manaka Y, Motokura K. CO 2 conversion to formamide using a fluoride catalyst and metallic silicon as a reducing agent. Commun Chem 2022; 5:150. [PMID: 36698012 PMCID: PMC9814565 DOI: 10.1038/s42004-022-00767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
Metallic silicon could be an inexpensive, alternative reducing agent for CO2 functionalization compared to conventionally used hydrogen or hydrosilanes. Here, metallic silicon recovered from solar panel production is used as a reducing agent for formamide synthesis. Various amines are converted to their corresponding amides with CO2 and H2O via an Si-H intermediate species in the presence of a catalytic amount of tetrabutylammonium fluoride. The reaction system exhibits a wide substrate scope for formamide synthesis. Spectroscopic analysis, including in situ Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), N2 adsorption/desorption analyses, and isotopic experiments reveal that the fluoride catalyst effectively oxidizes Si atoms on both surface and interior of the powdered silicon particles. The solid recovered after catalysis contained mesopores with a high surface area. This unique behavior of the fluoride catalyst in the presence of metallic silicon may be extendable to other reductive reactions, including those with complex substrates. Therefore, this study presents a potential strategy for the efficient utilization of abundant resources.
Collapse
Affiliation(s)
- Ruopeng Wang
- grid.268446.a0000 0001 2185 8709Department of Chemistry and Life Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501 Japan
| | - Kaiki Nakao
- grid.268446.a0000 0001 2185 8709Department of Chemistry and Life Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501 Japan ,grid.32197.3e0000 0001 2179 2105Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502 Japan
| | - Yuichi Manaka
- grid.32197.3e0000 0001 2179 2105Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502 Japan ,grid.208504.b0000 0001 2230 7538Renewable Energy Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-2-9 Machiikedai, Koriyama, 963-0298 Japan
| | - Ken Motokura
- grid.268446.a0000 0001 2185 8709Department of Chemistry and Life Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501 Japan ,grid.32197.3e0000 0001 2179 2105Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502 Japan
| |
Collapse
|
11
|
Mohammadi M, Siadati SA, Ahmadi S, Habibzadeh S, Poor Heravi MR, Hossaini Z, Vessally E. Carbon fixation of CO2 via cyclic reactions with borane in gaseous atmosphere leading to formic acid (and metaboric acid); A potential energy surface (PES) study. Front Chem 2022; 10:1003086. [PMID: 36324523 PMCID: PMC9620423 DOI: 10.3389/fchem.2022.1003086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Carbon dioxide (CO2), a stable gaseous species, occupies the troposphere layer of the atmosphere. Following it, the environment gets warmer, and the ecosystem changes as a consequence of disrupting the natural order of our life. Due to this, in the present reasearch, the possibility of carbon fixation of CO2 by using borane was investigated. To conduct this, each of the probable reaction channels between borane and CO2 was investigated to find the fate of this species. The results indicate that among all the channels, the least energetic path for the reaction is reactant complex (RC) to TS (A-1) to Int (A-1) to TS (A-D) to formic acid (and further meta boric acid production from the transformation of boric acid). It shows that use of gaseous borane might lead to controlling these dangerous greenhouse gases which are threatening the present form of life on Earth, our beautiful, fragile home.
Collapse
Affiliation(s)
- Marziyeh Mohammadi
- Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
- *Correspondence: Marziyeh Mohammadi, ; Seyyed Amir Siadati,
| | - Seyyed Amir Siadati
- Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
- *Correspondence: Marziyeh Mohammadi, ; Seyyed Amir Siadati,
| | - Sheida Ahmadi
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | | | | | | | - Esmail Vessally
- Department of Chemistry, Payame Noor University, Tehran, Iran
| |
Collapse
|
12
|
Motokura K, Nakao K, Manaka Y. Fluoride Catalysts and Organic Additives for Conversion of CO
2
to Formic Acid and Methanol using Powdered Silicon as Reducing Agent. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ken Motokura
- Department of Chemistry and Life Science Yokohama National University, 79–5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8502 Japan
| | - Kaiki Nakao
- Department of Chemistry and Life Science Yokohama National University, 79–5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8502 Japan
| | - Yuichi Manaka
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8502 Japan
- Renewable Energy Research Center National Institute of Advanced Industrial Science and Technology (AIST) 2-2-9 Machiikedai Koriyama 963-0298 Japan
| |
Collapse
|
13
|
Molinillo P, Lacroix B, Vattier F, Rendón N, Suárez A, Lara P. Reduction of N 2O with hydrosilanes catalysed by RuSNS nanoparticles. Chem Commun (Camb) 2022; 58:7176-7179. [PMID: 35670417 DOI: 10.1039/d2cc01470j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of RuSNS nanoparticles, prepared by decomposition of Ru(COD)(COT) with H2 in the presence of an SNS ligand, have been found to catalyse the reduction of the greenhouse gas N2O to N2 employing different hydrosilanes.
Collapse
Affiliation(s)
- Pablo Molinillo
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), CSIC and Universidad de Sevilla. Avda. Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Bertrand Lacroix
- Department of Material Science and Metallurgic Engineering, and Inorganic Chemistry, University of Cádiz, Spain.,IMEYMAT: Institute of Research on Electron Microscopy and Materials of the University of Cádiz, Spain
| | - Florencia Vattier
- Instituto de Ciencia de Materiales de Sevilla, CSIC-Universidad de Sevilla. Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Nuria Rendón
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), CSIC and Universidad de Sevilla. Avda. Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Andrés Suárez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), CSIC and Universidad de Sevilla. Avda. Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Patricia Lara
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), CSIC and Universidad de Sevilla. Avda. Américo Vespucio 49, 41092 Sevilla, Spain.
| |
Collapse
|
14
|
Ruccolo S, Sambade D, Shlian DG, Amemiya E, Parkin G. Catalytic reduction of carbon dioxide by a zinc hydride compound, [Tptm]ZnH, and conversion to the methanol level. Dalton Trans 2022; 51:5868-5877. [PMID: 35343979 DOI: 10.1039/d1dt04156h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The zinc hydride compound, [Tptm]ZnH, may achieve the reduction of CO2 by (RO)3SiH (R = Me, Et) to the methanol oxidation level, (MeO)xSi(OR)4-x, via the formate species, HCO2Si(OR)3. However, because insertion of CO2 into the Zn-H bond is more facile than insertion of HCO2Si(OR)3, conversion of HCO2Si(OR)3 to the methanol level only occurs to a significant extent in the absence of CO2.
Collapse
Affiliation(s)
- Serge Ruccolo
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - David Sambade
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Daniel G Shlian
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Erika Amemiya
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| |
Collapse
|
15
|
Liang N, Li Q, Ge M, Gu D, Liu Y. Mild Synthesis of a Dimethoxy‐Terminated Siloxane through a Ring‐Opening Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202104617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nianjie Liang
- School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Qiaosheng Li
- School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Mengyuan Ge
- School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Defa Gu
- School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Yuzhou Liu
- School of Chemistry Beihang University Beijing 100191 P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100191 P. R. China
- Beijing Shenyun Zhihe Technology Co. Ltd. Beijing 100094 P. R. China
| |
Collapse
|
16
|
Li W, Yan F, Cai S, Ding L, Li B, Zhang B, Zhang Y, Zhu L. Platinum nanoparticles as recyclable heterogeneous catalyst for selective methylation of amines and imines with formic acid: Indirect utilization of CO2. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Newar R, Kalita R, Akhtar N, Antil N, Chauhan M, Manna K. N-Formylation of amines utilizing CO 2 by a heterogeneous metal–organic framework supported single-site cobalt catalyst. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01231f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-site cobalt-hydride supported on oxo-nodes of a porous aluminium metal–organic framework is a chemoselective and reusable catalyst for N-formylation of amines using CO2.
Collapse
Affiliation(s)
- Rajashree Newar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Rahul Kalita
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Naved Akhtar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Neha Antil
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Manav Chauhan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
18
|
Lin XT, Matsumoto K, Maegawa Y, Takeuchi K, Fukaya N, Sato K, Inagaki S, Choi JC. Immobilized Zn(OAc) 2 on bipyridine-based periodic mesoporous organosilica for N-formylation of amines with CO 2 and hydrosilanes. NEW J CHEM 2021. [DOI: 10.1039/d1nj01204e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Zn(OAc)2 immobilized on bipyridine-based periodic mesoporous organosilica is a good catalyst for N-formylation of amines with CO2 and PhSiH3.
Collapse
Affiliation(s)
- Xiao-Tao Lin
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba Central 5
- 1-1-1 Higashi
- Tsukuba
- Japan
| | - Kazuhiro Matsumoto
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba Central 5
- 1-1-1 Higashi
- Tsukuba
- Japan
| | | | - Katsuhiko Takeuchi
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba Central 5
- 1-1-1 Higashi
- Tsukuba
- Japan
| | - Norihisa Fukaya
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba Central 5
- 1-1-1 Higashi
- Tsukuba
- Japan
| | - Kazuhiko Sato
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba Central 5
- 1-1-1 Higashi
- Tsukuba
- Japan
| | - Shinji Inagaki
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba Central 5
- 1-1-1 Higashi
- Tsukuba
- Japan
| | - Jun-Chul Choi
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba Central 5
- 1-1-1 Higashi
- Tsukuba
- Japan
| |
Collapse
|