1
|
Thongam DD, Hang DR, Liang CT, Chou MMC. Doping and defect engineering in carbon-based electrocatalysts for enhanced electrochemical CO 2 reduction: From 0D to 3D materials. Adv Colloid Interface Sci 2025; 339:103429. [PMID: 39951901 DOI: 10.1016/j.cis.2025.103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 12/16/2024] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
The increasing atmospheric CO2 levels and the urgent need for sustainable energy solutions have driven research into electrochemical CO2 reduction. Carbon-based materials have received significant attention for their potential as electrocatalysts, yet their inert nature often limits their performance. Defect engineering and heteroatom doping have emerged as transformative approaches to overcome these limitations, enhancing both catalytic activity and Faradaic efficiency. This review systematically examines the role of these strategies across diverse carbon materials, including graphene, carbon nanotubes, carbon dots, and boron-doped diamond. Special attention is given to the incorporation of heteroatoms, such as nitrogen and boron, and the modulation of defect structures to optimize CO2 reduction pathways. By exploring the interplay between dopant type, defect density, and material dimensionality, we provide a comprehensive understanding of how tailored carbon-based electrocatalysts can drive advancements in sustainable electrochemical CO2 conversion. This work underscores the potential of defect-engineered and doped carbon materials to revolutionize the field of electrocatalysis, paving the way for innovative solutions to environmental and energy challenges.
Collapse
Affiliation(s)
- Debika Devi Thongam
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; School of Energy Sciences and Engineering, Indian Institute of Technology Guwahati, Assam 781039, India; Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Da-Ren Hang
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Chi-Te Liang
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan; Taiwan Consortium of Emergent Crystalline Materials, Taipei 10617, Taiwan; Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Mitch M C Chou
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
2
|
Peng Y, Chen S, Hu Z, Yin M, Pei L, Wei Q, Xie Z. Guanine-derived carbon nanosheet encapsulated Ni nanoparticles for efficient CO 2 electroreduction. Dalton Trans 2024; 53:9724-9731. [PMID: 38814145 DOI: 10.1039/d4dt00495g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Developing novel electrocatalysts for achieving high selectivity and faradaic efficiency in the carbon dioxide reduction reaction (CO2RR) poses a major challenge. In this study, a catalyst featuring a nitrogen-doped carbon shell-coated Ni nanoparticle structure is designed for efficient carbon dioxide (CO2) electroreduction to carbon monoxide (CO). The optimal Ni@NC-1000 catalyst exhibits remarkable CO faradaic efficiency (FECO) values exceeding 90% across a broad potential range of -0.55 to -0.9 V (vs. RHE), and attains the maximum FECO of 95.6% at -0.75 V (vs. RHE) in 0.5 M NaHCO3. This catalyst exhibits sustained carbon dioxide electroreduction activity with negligible decay after continuous electrolysis for 20 h. More encouragingly, a substantial current density of 200.3 mA cm-2 is achieved in a flow cell at -0.9 V (vs. RHE), reaching an industrial-level current density. In situ Fourier transform infrared spectroscopy and theoretical calculations demonstrate that its excellent catalytic performance is attributed to highly active pyrrolic nitrogen sites, promoting CO2 activation and significantly reducing the energy barrier for generating *COOH. To a considerable extent, this work presents an effective strategy for developing high-efficiency catalysts for electrochemical CO2 reduction across a wide potential window.
Collapse
Affiliation(s)
- Ying Peng
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), Fuzhou University, Fuzhou 350016, Fujian, China.
| | - Shuo Chen
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), Fuzhou University, Fuzhou 350016, Fujian, China.
| | - Zhengli Hu
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), Fuzhou University, Fuzhou 350016, Fujian, China.
| | - Mengqi Yin
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), Fuzhou University, Fuzhou 350016, Fujian, China.
| | - Lishun Pei
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), Fuzhou University, Fuzhou 350016, Fujian, China.
| | - Qiaohua Wei
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), Fuzhou University, Fuzhou 350016, Fujian, China.
| | - Zailai Xie
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), Fuzhou University, Fuzhou 350016, Fujian, China.
| |
Collapse
|
3
|
Gao Y, Xiao H, Ma X, Yue Z, Geng B, Zhao M, Zhang L, Zhang J, Zhang J, Jia J, Wu H. Cooperative adsorption of interfacial Ga-N dual-site in GaOOH@N-doped carbon nanotubes for enhanced electrocatalytic reduction of carbon dioxide. J Colloid Interface Sci 2024; 654:339-347. [PMID: 37844505 DOI: 10.1016/j.jcis.2023.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
To reduce activation energy barrier and promote the kinetics of electrocatalytic CO2 reduction reaction (eCO2RR), the performance of CO2 adsorption and activation on electrocatalysts should be optimized. Here, GaOOH is successfully coupled with N-doped carbon nanotubes (NC) via a facile self-assembly-calcination process. The obtained GaOOH@N-doped carbon nanotubes (Ga-NC) display the best CO faradaic efficiency of 96.1 % at -0.6 V (vs. reversible hydrogen electrode). Control-experiment and characterization results suggest Ga-N dual-site in interface between GaOOH and NC shows cooperative adsorption of CO2. C atom in CO2 is adsorbed on N site while O atom in CO2 is adsorbed on Ga site. This cooperative adsorption efficiently promotes the CO2 adsorption and activation performance, as well as the breaking of CO bond due to opposite attraction from Ga-N dual-site. Moreover, in-situ Fourier transform infrared spectroscopy confirms decreased reaction barrier for formation of *CO2- and *COOH intermediates. This work inspires us to construct interfacial dual-site structure with cooperative adsorption property for promoting eCO2RR activity.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China
| | - He Xiao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| | - Xiaofang Ma
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China
| | - Zhizhu Yue
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China
| | - Bo Geng
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China
| | - Man Zhao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| | - Li Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China
| | - Junming Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| | - Jian Zhang
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| | - Haishun Wu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| |
Collapse
|
4
|
Zeng Q, Yang G, Zhang Q, Liu Z, Dang C, Qin B, Peng F. Elucidating the origin of catalytic activity of nitrogen-doped carbon coated nickel toward electrochemical reduction of CO 2. J Colloid Interface Sci 2023; 650:132-142. [PMID: 37399749 DOI: 10.1016/j.jcis.2023.06.198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Converting CO2 into valuable chemicals and fuels through clean and renewable energy electricity provides a way to achieve sustainable development for human societies. In this study, carbon coated nickel catalysts (Ni@NCT) were prepared by solvothermal and high-temperature pyrolysis methods. A series of Ni@NC-X catalysts were obtained by pickling with different kinds of acids for electrochemical CO2 reduction reaction (ECRR). The results show that Ni@NC-N treated with nitric acid has the highest selectivity but lower activity, Ni@NC-S treated with sulfuric acid has the lowest selectivity, and Ni@NC-Cl treated with hydrochloric acid shows the best activity and good selectivity. At -1.16 V, Ni@NC-Cl has a considerable CO yield of 472.9 μmol h-1 cm-2, which is significantly superior to Ni@NC-N (327.5), Ni@NC-S (295.6) and Ni@NC (270.8). The controlled experiments show that there is a synergistic effect between Ni and N. The chlorine adsorbed on the surface can promote the performance of ECRR. The poisoning experiments indicate that the contribution of surface Ni atoms to the ECRR is very small, and the increase of activity is mainly due to the nitrogen doped carbon coated Ni particles. The relationship between activity and selectivity of ECRR on different acid-washed catalysts was correlated by theoretical calculations for the first time, which is also in good agreement with the experimental results.
Collapse
Affiliation(s)
- Qingting Zeng
- School Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Guangxing Yang
- School Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qiao Zhang
- School Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhiting Liu
- School Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Chengxiong Dang
- School Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Binhao Qin
- China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangdong Provincial Key Laboratory of Advanced Welding Technology, Guangzhou 510650, China.
| | - Feng Peng
- School Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Wang F, Wang G, Deng P, Chen Y, Li J, Wu D, Wang Z, Wang C, Hua Y, Tian X. Ultrathin Nitrogen-Doped Carbon Encapsulated Ni Nanoparticles for Highly Efficient Electrochemical CO 2 Reduction and Aqueous Zn-CO 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301128. [PMID: 36919799 DOI: 10.1002/smll.202301128] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR), powered by renewable electricity, has attracted great attention for producing high value-added fuels and chemicals, as well as feasibly mitigating CO2 emission problem. Here, this work reports a facile hard template strategy to prepare the Ni@N-C catalyst with core-shell structure, where nickel nanoparticles (Ni NPs) are encapsulated by thin nitrogen-doped carbon shells (N-C shells). The Ni@N-C catalyst has demonstrated a promising industrial current density of 236.7 mA cm-2 with the superb FECO of 97% at -1.1 V versus RHE. Moreover, Ni@N-C can drive the reversible Zn-CO2 battery with the largest power density of 1.64 mW cm-2 , and endure a tough cycling durability. These excellent performances are ascribed to the synergistic effect of Ni@N-C that Ni NPs can regulate the electronic microenvironment of N-doped carbon shells, which favor to enhance the CO2 adsorption capacity and the electron transfer capacity. Density functional theory calculations prove that the binding configuration of N-C located on the top of Ni slabs (Top-Ni@N-C) is the most thermodynamically stable and possess a lowest thermodynamic barrier for the formation of COOH* and the desorption of CO. This work may pioneer a new method on seeking high-efficiency and worthwhile electrocatalysts for CO2 RR and Zn-CO2 battery.
Collapse
Affiliation(s)
- Fangyuan Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Guan Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Peilin Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Yao Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Jing Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Daoxiong Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Zhitong Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Chongtai Wang
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Provinc, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China
| | - Yingjie Hua
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Provinc, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
6
|
Liu G, Zhan J, Zhang Z, Zhang LH, Yu F. Recent Advances of the Confinement Effects Boosting Electrochemical CO 2 Reduction. Chem Asian J 2023; 18:e202200983. [PMID: 36373345 DOI: 10.1002/asia.202200983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/13/2022] [Indexed: 11/16/2022]
Abstract
Powered by clean and renewable energy, electrocatalytic CO2 reduction reaction (CO2 RR) to chemical feedstocks is an effective way to mitigate the greenhouse effect and artificially close the carbon cycle. However, the performance of electrocatalytic CO2 RR was impeded by the strong thermodynamic stability of CO2 molecules and the high susceptibility to hydrogen evolution reaction (HER) in aqueous phase systems. Moreover, the numerous reaction intermediates formed at very near potentials lead to poor selectivity of reaction products, further preventing the industrialization of CO2 RR. Catalysis in confined space can enrich the reaction intermediates to improve their coverage at the active site, increase local pH to inhibit HER, and accelerate the mass transfer rate of reactants/products and subsequently facilitate CO2 RR performance. Therefore, we summarize the research progress on the application of the confinement effects in the direction of CO2 RR in theoretical and experimental directions. We first analyzed the mechanism of the confinement effect. Subsequently, the confinement effect was discussed in various forms, which can be characterized as an abnormal catalytic phenomenon due to the relative limitation of the reaction region. In specific, based on the physical structure of the catalyst, the confinement effect was divided in four categories: pore structure confinement, cavity structure confinement, active center confinement, and other confinement methods. Based on these discussions, we also have summarized the prospects and challenges in this field. This review aims to stimulate greater interests for the development of more efficient confined strategy for CO2 RR in the future.
Collapse
Affiliation(s)
- Guomeng Liu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Jiauyu Zhan
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Zisheng Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Lu-Hua Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Fengshou Yu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| |
Collapse
|
7
|
Lu Q, Chen C, Di Q, Liu W, Sun X, Tuo Y, Zhou Y, Pan Y, Feng X, Li L, Chen D, Zhang J. Dual Role of Pyridinic-N Doping in Carbon-Coated Ni Nanoparticles for Highly Efficient Electrochemical CO2 Reduction to CO over a Wide Potential Range. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04825] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qing Lu
- Department of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Chen Chen
- Department of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
- East China Design Branch, China Petroleum Engineering & Construction Corporation, Qingdao 266071, PR China
| | - Qian Di
- Department of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Wanli Liu
- Department of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xiaohui Sun
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Yongxiao Tuo
- Department of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yan Zhou
- Department of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xiang Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai 201204, PR China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Jun Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, PR China
| |
Collapse
|
8
|
Bo J, Li M, Zhu X, Ge Q, Han J, Wang H. Bamboo-like N-doped carbon nanotubes encapsulating M(Co, Fe)-Ni alloy for electrochemical production of syngas with potential-independent CO/H2 ratios. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|