1
|
Kumar Manna B, Samanta R, Kumar Trivedi R, Chakraborty B, Barman S. Hydrogen spillover inspired bifunctional Platinum/Rhodium Oxide-Nitrogen-Doped carbon composite for enhanced hydrogen evolution and oxidation reactions in base. J Colloid Interface Sci 2024; 670:258-271. [PMID: 38763022 DOI: 10.1016/j.jcis.2024.05.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
The poor activity of Pt-based-catalysts for alkaline hydrogen oxidation/evolution reaction (HOR/HER) encourages scientific society to design an effective electrocatalyst to develop alkaline fuel cells/electrolyzers. Herein, platinum/rhodium oxide-nitrogen-doped carbon (Pt/Rh2O3-CNx) composite is prepared for alkaline HER and HOR inspired by hydrogen spillover. The HER performance of Pt/Rh2O3-CNx is ∼ 6 times higher than Pt/C. In HOR, Pt/Rh2O3-CNx possesses an exchange current density of 657.60 mA/mgmetal, which is ∼ 3.4 times higher than Pt/C. Hydrogen and hydroxyl binding energy (HBE and OHBE) contribute equally to alkaline HOR/HER. The experimental and theoretical evidence suggests that the enhanced HER and HOR activity of Pt/Rh2O3-CNx may be due to hydrogen spillover from Pt to Rh2O3. Small work function difference [0.08 eV] of the system suggested hydrogen-spillover is feasible, which has been justified by reaction-free energy calculations. We proposed that the dissociation of hydrogen (H2) and water (H2O) occurs at Pt to form Pt-adsorbed hydrogen species (Pt-Had). Then, some Had moves to Rh2O3 through hydrogen spillover and reacts with neighboring Had or adsorbed hydroxyl species (OHad) to form H2 or H2O, which enhances the HER and HOR activity, respectively. The role of water-metal-hydroxyl species in the electrical double layer was also demonstrated on alkaline HOR/HER. This work may help to design the hydrogen-spillover-based catalysts for several renewable energy technologies.
Collapse
Affiliation(s)
- Biplab Kumar Manna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Orissa 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Rajib Samanta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Orissa 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Ravi Kumar Trivedi
- Department of Physics, Karpagam Academy of Higher Education, Coimbatore 641021, India; Centre for High Energy Physics, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Brahmananda Chakraborty
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India; High Pressure & amp, Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| | - Sudip Barman
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Orissa 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
2
|
Chen P, Li K, Ye Y, Wu D, Tong Y. Coupled MoO 3-x@CoP heterostructure as a pH-universal electrode for hydrogen generation at a high current density. Dalton Trans 2023; 52:2262-2271. [PMID: 36723109 DOI: 10.1039/d2dt03551k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Developing high-performance and low-cost self-supporting electrodes as pH-universal electrocatalysts for the hydrogen-evolution reaction (HER) and realizing high-quality hydrogen production at a high current density are highly desirable, but are hugely challenging. We created a self-supporting electrode with a coupled hierarchical heterostructure by simple electrodeposition followed by sulfurization. It comprised oxygen-deficient molybdenum oxide (MoO3-x) and cobalt phosphide (CoP) on nickel foam (NF), which represented a highly active pH-universal electrocatalyst for the HER at a high current density. Benefiting from a plethora of catalytic active sites, improved interfacial charge transfer, and strong electronic interaction, this type of MoO3-x@CoP/NF electrode delivered a superior catalytic performance. Overpotentials of only 100 mV, 135 mV, and 400 mV were needed to realize a high current density of 1 A cm-2 in alkaline, acid and neutral media, respectively, which were superior to those of most other well-developed materials based on non-noble metals. Our experimental work demonstrates the synergistic advantages of a MoO3-x@CoP heterostructure for improving the intrinsic catalytic performance but also paves a new path for the rational design of advanced electrodes for hydrogen generation in a wide range of pH conditions.
Collapse
Affiliation(s)
- Pengzuo Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Kaixun Li
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yutong Ye
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Doufeng Wu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yun Tong
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Yu X, Tian H, Fu Z, Pei F, Peng L, Meng G, Kong F, Chen Y, Chen C, Chang Z, Cui X, Shi J. Strengthening the Hydrogen Spillover Effect via the Phase Transformation of W 18O 49 for Boosted Hydrogen Oxidation Reaction. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Xu Yu
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Han Tian
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Zhengqian Fu
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Fenglai Pei
- Shanghai Motor Vehicle Inspection Certification & Tech Innovation Center Co., Ltd., Shanghai 201805, P. R China
| | - Lingxin Peng
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ge Meng
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fantao Kong
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Yafeng Chen
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Chang Chen
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ziwei Chang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Xiangzhi Cui
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Jianlin Shi
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Sgarbi R, Doan H, Martin V, Chatenet M. Tailoring the Durability of Carbon-Coated Pd Catalysts Towards Hydrogen Oxidation Reaction (HOR) in Alkaline Media. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Yang Y, Dai Q, Shi L, Liu Y, Isimjan TT, Yang X. Electronic Modulation of Pt Nanoparticles on Ni 3N-Mo 2C by Support-Induced Strategy for Accelerating Hydrogen Oxidation and Evolution. J Phys Chem Lett 2022; 13:2107-2116. [PMID: 35225609 DOI: 10.1021/acs.jpclett.2c00021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrochemical energy conversion and storage through hydrogen has revolutionized sustainable energy systems using fuel cells and electrolyzers. Regrettably, the sluggish alkaline hydrogen oxidation reaction (HOR) hampers advances in fuel cells. Herein, we report a Pt/Ni3N-Mo2C bifunctional electrocatalyst toward HOR and hydrogen evolution reaction (HER). The Pt/Ni3N-Mo2C exhibits remarkable HOR/HER performance in alkaline media. The mass activity at 50 mV and exchange current density of HOR are 5.1 and 1.5 times that of commercial Pt/C, respectively. Moreover, it possesses an impressive HER activity with an overpotential of 11 mV @ 10 mA cm-2, which is lower than that of Pt/C and most reported electrocatalysts under the same conditions. Density functional theory (DFT) calculations combined with experimental results reveal that Pt/Ni3N-Mo2C not only possesses an optimal balance between hydrogen binding energy (HBE) and OH- adsorption but also facilitates water adsorption and dissociation on the catalyst surface, which contribute to the excellent HOR/HER performance. Thus, this work may guide bifunctional HOR/HER catalyst design in the conversion and transport of energy.
Collapse
Affiliation(s)
- Yuting Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Qiumei Dai
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Luyan Shi
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Yi Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
6
|
Jiang Y, Qin Y, Luo W, Liu H, Shen W, Jiang Y, Li M, He R. Highly Efficient Oxygen‐Modulated Ru‐Based HER Electrocatalyst in a Wide pH Range. ChemElectroChem 2022. [DOI: 10.1002/celc.202101580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yong Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 PR China
| | - Youcheng Qin
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 PR China
| | - Wei Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 PR China
| | - Hao Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 PR China
| | - Wei Shen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 PR China
| | - Yimin Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 PR China
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 PR China
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 PR China
| |
Collapse
|
7
|
Zhao MJ, Su SY, Deng N, Shi JQ, Li F, He JB. The Central Role of Nitrogen Atoms in a Zeolitic Imidazolate Framework-Derived Catalyst for Cathodic Hydrogen Evolution. CHEMSUSCHEM 2021; 14:3926-3934. [PMID: 34288529 DOI: 10.1002/cssc.202101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Platinum usually offers the most effective active center for hydrogen evolution reaction (HER), because of the optimal trade-off between the adsorption and desorption of hydrogeN atoms (H*) on Pt atoms. Herein, we report an unusual result regarding the active center of a HER catalyst, which was synthesized by electrodepositing traces of Pt nanoparticles (NPs) into a porous nitrogen-rich dodecahedron matrix derived from zeolitic imidazolate framework ZIF-8. With an ultra-low Pt loading of 2.76 μg cm-2 , the N-Pt-bonded catalyst can produce a current density of 117 mA cm-2 for the HER in 1.0 m H2 SO4 at an overpotential of 50 mV, whereas the commercial Pt/C (300 μg cm-2 Pt) can only reach 50 mA cm-2 under the same conditions. Cyclic voltammetry demonstrates that both the H* adsorption and the Pt oxidation are not allowed to occur on this catalyst, due to a full surface coverage of the trace Pt NPs by imidazole. The results from the specially designed experiments indicate that the imidazole N atoms may act as proton anchor-sites for the HER due to their electron donor nature. Density functional theory calculations also support a catalytic HER mechanism centered at the Pt-supported N active center, which needs a Gibbs free energy of H* absorption (ΔGH* ) significantly smaller than the absolute value of ΔGH* on the Pt(111) surface. We hope that the results of this study will encourage the research on novel N-centered catalysts for the HER.
Collapse
Affiliation(s)
- Meng-Jie Zhao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Sheng-Ying Su
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Ning Deng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Jun-Qing Shi
- Anhui Province Key Laboratory of Green Manufacturing of Power Battery, Tianneng, Fuyang, Jieshou, 236500, P. R. China
| | - Fang Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
- Anhui Province Key Laboratory of Green Manufacturing of Power Battery, Tianneng, Fuyang, Jieshou, 236500, P. R. China
| | - Jian-Bo He
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
- Anhui Province Key Laboratory of Green Manufacturing of Power Battery, Tianneng, Fuyang, Jieshou, 236500, P. R. China
| |
Collapse
|
8
|
Yang Y, Shao X, Zhou S, Yan P, Isimjan TT, Yang X. Interfacial Electronic Coupling of NC@WO 3 -W 2 C Decorated Ru Clusters as a Reversible Catalyst toward Electrocatalytic Hydrogen Oxidation and Evolution Reactions. CHEMSUSCHEM 2021; 14:2992-3000. [PMID: 34076948 DOI: 10.1002/cssc.202100893] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Designing a bifunctional catalyst for hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) is significant toward developing sustainable hydrogen-electric conversion systems. Herein, a cost-effective bifunctional catalyst, Ru/N-doped Carbon@WO3 -W2 C (Ru/NC@WOC), was developed via co-precipitation and polyol reduction. Ru/NC@WOC showed superior HOR/HER activity in alkaline solution in comparison with commercial Pt/C. HOR electrochemical tests showed that the mass activity at 0.05 V (1.96 m A μ g R u - 1 ) and exchange-current density were 7.5 and 1.2 times that of Pt/C. Additionality, Ru/NC@WOC exhibited up 30-fold HOR activity in mass activity compared with benchmark Ru/C. Moreover, it also displayed exceptional electrocatalytic HER with overpotentials of 31 mV at 10 mA cm-2 and 119 mV at 100 mA cm-2 , surpassing Pt/C, benchmark Ru/C, and most of the previously reported electrocatalysts. The outstanding catalytic activity of Ru/NC@WOC probably arises from the synergy between Ru and NC@WOC matrix, suitable hydrogen binding energy, and highly conductive substrate. Thus, this work may pave a new avenue to fabricate low-cost bifunctional HOR/HER catalysts for alkaline fuel cells and water electrolyzer.
Collapse
Affiliation(s)
- Yuting Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xue Shao
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Shuqing Zhou
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Puxuan Yan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|