1
|
Drpic D, Amaya-García FA, Unterlass MM. Lophine analogues as fluorophores for selective bioimaging of the endoplasmic reticulum. Chem Commun (Camb) 2025; 61:5293-5296. [PMID: 40091763 PMCID: PMC11911997 DOI: 10.1039/d4cc06552b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
The design of small-molecule fluorescent probes for labelling the endoplasmic reticulum (ER) revolves around a well-established albeit limited group of structural architectures. Here, we synthesized new fluorescent lophines in one step in high-temperature water (HTW) and explored their application as dyes for selective bioimaging of the ER.
Collapse
Affiliation(s)
- Danica Drpic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT25.3, 1090 Vienna, Austria
| | - Fabián A Amaya-García
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT25.3, 1090 Vienna, Austria
- Department of Chemistry, Universität Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany.
| | - Miriam M Unterlass
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT25.3, 1090 Vienna, Austria
- Department of Chemistry, Universität Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany.
- Chair of Chemical Technology of Materials Synthesis, Julius Maximilian University Würzburg, Röntgenring 11, 97070 Würzburg, Germany.
- Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97082 Würzburg, Germany.
| |
Collapse
|
2
|
Amaya-García F, Schittenhelm L, Unterlass MM. High-temperature water unlocks urea as nitrogen-source towards imidazoles. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:10411-10421. [PMID: 39309018 PMCID: PMC11414530 DOI: 10.1039/d4gc01705f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024]
Abstract
Urea is a non-toxic, harmless, and abundant bulk organic chemical featuring high nitrogen content. Therefore, urea could be a prime green candidate for introducing nitrogen atoms into organic molecules. In this regard, urea in organic synthesis has been mainly employed as building block, component of solvent systems, catalyst, or for pH adjustment, while uses of urea as NH3-source towards the construction of small organic compounds are scarce. Here, nothing but high-temperature water (HTW) is employed to conduct the aquathermolysis of urea, generating NH3 to propel the Debus-Radzsisweski multicomponent reaction (MCR) towards imidazoles. The approach does neither require additional catalysts nor reaction auxiliaries or volatile organic compounds as solvent. Urea was used as N-source in combination with different 1,2-diketones and aldehydes featuring a variety of functional groups towards 23 lophine analogues (190 °C, 1-3 hours). Moreover, the presented synthesis performs equally or better than classical syntheses when acid-sensitive substrates are employed. The greenness of the synthesis using urea in HTW was assessed through green metrics and compared with syntheses reported in the literature in a large-scale fashion. Overall, the reported syntheses feature E-factor and process mass intensity values in ranges comparable to those of syntheses reported in literature.
Collapse
Affiliation(s)
- Fabián Amaya-García
- Universität Konstanz, Department of Chemistry Universitätsstrasse 10 78464 Konstanz Germany
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences Lazarettgasse 14 AKH BT25.3 1090 Vienna Austria
| | - Lena Schittenhelm
- Universität Konstanz, Department of Chemistry Universitätsstrasse 10 78464 Konstanz Germany
| | - Miriam M Unterlass
- Universität Konstanz, Department of Chemistry Universitätsstrasse 10 78464 Konstanz Germany
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences Lazarettgasse 14 AKH BT25.3 1090 Vienna Austria
| |
Collapse
|
3
|
Fitzgerald SA, Payce EN, Horton PN, Coles SJ, Pope SJA. 2-(Thienyl)quinoxaline derivatives and their application in Ir(III) complexes yielding tuneable deep red emitters. Dalton Trans 2023; 52:16480-16491. [PMID: 37874197 DOI: 10.1039/d3dt02193a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The synthesis and characterisation of eleven different 2-(thienyl)quinoxaline species that incorporate different points of functionality, including at the thiophene or quinoxaline rings, are described. These species display variable fluorescence properties in the visible region (λem = 401-491 nm) depending upon the molecular structures and extent of conjugation. The series of 2-(thienyl)quinoxaline species were then investigated as cyclometalating agents for Ir(III) to yield [Ir(C^N)2(bipy)]PF6 (where C^N = the cyclometalated ligand; bipy = 2,2'-bipyridine). Eight complexes were successfully isolated and fully characterised by an array of spectroscopic and analytical techniques. Two Ir(III) examples were structurally characterised in the solid state using single crystal X-ray diffraction; both structures confirmed the proposed formulations and coordination spheres in each case showing that the thiophene coordinates via a Ir-C bond. The photophysical properties of the complexes revealed that each complex is luminescent under ambient conditions with a range of emission wavelengths observed (665-751 nm) indicating that electronic tuning can be achieved via both the thienyl and quinoxaline moieties.
Collapse
Affiliation(s)
- Sophie A Fitzgerald
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, UK.
| | - Ellie N Payce
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, UK.
| | - Peter N Horton
- UK National Crystallographic Service, Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Simon J Coles
- UK National Crystallographic Service, Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Simon J A Pope
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, UK.
| |
Collapse
|
4
|
Gazil O, Bernardi J, Lassus A, Virgilio N, Unterlass MM. Urethane functions can reduce metal salts under hydrothermal conditions: synthesis of noble metal nanoparticles on flexible sponges applied in semi-automated organic reduction. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:12703-12712. [PMID: 37346738 PMCID: PMC10281335 DOI: 10.1039/d2ta09405c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/04/2023] [Indexed: 06/23/2023]
Abstract
We report an additive-free one-pot hydrothermal synthesis of Au, Ag, Pd, and alloy AuPd nanoparticles (NPs) anchored on commercial polyurethane (PU) foams. While unable to reduce the precursor metal salts at room temperature, PU is able to serve as a reducing agent under hydrothermal conditions. The resulting NP@PU sponge materials perform comparably to reported state-of-the-art reduction catalysts, and are additionally very well suited for use in semi-automated synthesis: the NP anchoring is strong enough and the support flexible enough to be used as a 'catalytic sponge' that can be manipulated with a robotic arm, i.e., be repeatedly dipped into and drawn out of solutions, wrung out, and re-soaked.
Collapse
Affiliation(s)
- Olivier Gazil
- Universität Konstanz, Department of Chemistry, Solid State Chemistry Universitätsstrasse 10 D-78464 Konstanz Germany
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal C.P. 6079 Succursale Centre-Ville Montréal Québec H3C 3A7 Canada
| | - Johannes Bernardi
- University Service Centre for Transmission Electron Microscopy, Vienna University of Technology Wiedner Hauptstrasse 8-10/137 A-1040 Vienna Austria
| | - Arthur Lassus
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal C.P. 6079 Succursale Centre-Ville Montréal Québec H3C 3A7 Canada
| | - Nick Virgilio
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal C.P. 6079 Succursale Centre-Ville Montréal Québec H3C 3A7 Canada
| | - Miriam M Unterlass
- Universität Konstanz, Department of Chemistry, Solid State Chemistry Universitätsstrasse 10 D-78464 Konstanz Germany
- Center for Molecular Medicine of the Austrian Academy of Sciences (CeMM) Lazarettgasse 14, AKH BT25.3 1090 Vienna Austria
| |
Collapse
|
5
|
Unterlass MM, Amaya-García F. Synthesis of 2,3-Diarylquinoxaline Carboxylic Acids in High-Temperature Water. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1719922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractAromatic carboxylic acids are prone to decarboxylate in high-temperature water (HTW). While the decarboxylation kinetics of several aromatic carboxylic acids have been explored, studies on their compatibility with organic syntheses in HTW are scarce. Herein, we report the hydrothermal synthesis (HTS) of 2,3-diarylquinoxaline carboxylic acids from 1,2-diarylketones and 3,4-diaminobenzoic acid. A detailed study of the reaction parameters was performed to identify reaction conditions towards minimal decarboxylation. Thirteen 2,3-diarylquinoxaline-6-carboxylic acids are obtained at temperatures between 150–230 °C within 5–30 minutes. The reported conditions feature comparable performance to those of classic syntheses, avoiding volatile organic solvents, strong acids and toxic catalysts. Decarboxylated quinoxalines arise as side products in variable amounts via direct decarboxylation of the 3,4-diaminobenzoic acid. To completely inhibit the decarboxylation, we show that suitable structural analogues of 3,4-diaminobenzoic acid can act as starting compounds. Thus, ester hydrolysis of methyl 3,4-diaminobenzoate and deprotection of di-Boc-protected 3,4-diminobenzoic can be coupled with the HTS of quinoxaline towards quinoxaline carboxylic acids, while fully avoiding decarboxylated side products.
Collapse
Affiliation(s)
- Miriam M. Unterlass
- Universität Konstanz, Department of Chemistry, Solid State Chemistry
- CeMM - Research Centre of Molecular Medicine of the Austrian Academy of Sciences
| | - Fabián Amaya-García
- Universität Konstanz, Department of Chemistry, Solid State Chemistry
- CeMM - Research Centre of Molecular Medicine of the Austrian Academy of Sciences
| |
Collapse
|
6
|
Kim T, Joo SH, Gong J, Choi S, Min JH, Kim Y, Lee G, Lee E, Park S, Kwak SK, Lee H, Kim B. Geomimetic Hydrothermal Synthesis of Polyimide‐Based Covalent Organic Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Taehyung Kim
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
- School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Se Hun Joo
- School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Jintaek Gong
- Center for Multiscale Chiral Architectures and Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Sungho Choi
- Division of Advanced Material Science Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Ju Hong Min
- School of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST) Gwangju 61005 Republic of Korea
| | - Yongchul Kim
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Geunsik Lee
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST) Gwangju 61005 Republic of Korea
| | - Soojin Park
- Division of Advanced Material Science Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Sang Kyu Kwak
- School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Hee‐Seung Lee
- Center for Multiscale Chiral Architectures and Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Byeong‐Su Kim
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
7
|
Kim T, Joo SH, Gong J, Choi S, Min JH, Kim Y, Lee G, Lee E, Park S, Kwak SK, Lee HS, Kim BS. Geomimetic Hydrothermal Synthesis of Polyimide-Based Covalent Organic Frameworks. Angew Chem Int Ed Engl 2021; 61:e202113780. [PMID: 34708501 DOI: 10.1002/anie.202113780] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 12/18/2022]
Abstract
Despite its abundance, water is not widely used as a medium for organic reactions. However, under geothermal conditions, water exhibits unique physicochemical properties, such as viscosity and a dielectric constant, and the ionic product become similar to those of common organic solvents. We have synthesized highly crystalline polyimide-based covalent organic frameworks (PICs) under geomimetic hydrothermal conditions. By exploiting triphenylene-2,3,6,7,10,11-hexacarboxylic acid in combination with various aromatic diamines, PICs with various pore dimensions and crystallinities were synthesized. XRD, FT-IR, and DFT calculations revealed that the solubility of the oligomeric intermediates under hydrothermal conditions affected the stacking structures of the crystalline PICs. Furthermore, the synthesized PICs demonstrate promising potential as an anode material in lithium-ion batteries owing to its unique redox-active properties and high surface area.
Collapse
Affiliation(s)
- Taehyung Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea.,School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Se Hun Joo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jintaek Gong
- Center for Multiscale Chiral Architectures and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungho Choi
- Division of Advanced Material Science, Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Ju Hong Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yongchul Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Geunsik Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Soojin Park
- Division of Advanced Material Science, Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sang Kyu Kwak
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hee-Seung Lee
- Center for Multiscale Chiral Architectures and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|