1
|
Wang R, Li S, Hu Y, Wu S, Zhu J, An L, Xi P, Yan CH. Van der Waals heterostructures via spontaneous self-restacked assembling for enhanced water oxidation. Chem Sci 2025:d5sc02417j. [PMID: 40417287 PMCID: PMC12096886 DOI: 10.1039/d5sc02417j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 05/14/2025] [Indexed: 05/27/2025] Open
Abstract
The pursuit of sustainable energy solutions has identified water oxidation as a crucial reaction, with the oxygen evolution reaction (OER) serving as a decisive efficiency determinant in water technologies. This study presents a novel van der Waals (vdW) heterostructure catalyst, synthesized through a spontaneous self-restacking of nickel-iron-based phosphorus-sulfur compounds (NiPS3 and FePS3). Density Functional Theory (DFT) calculations underpinned the thermodynamic spontaneity of the restacking process, uncovering an electronic transition that significantly amplifies electrocatalytic functionality. The catalyst demonstrates a remarkable OER performance, achieving a low overpotential of 257 mV at 20 mA cm-2 and a Tafel slope of 49 mV dec-1 and demonstrates remarkable durability sustaining 500 mA cm-2 for 140 hours. In addition to its high performance, the material's rapid reconstruction facilitated by surface electron enrichment and the release of phosphate and sulfate during the OER underscores a dual enhancement in both activity and stability. The universality of the synthesis method is further demonstrated by extending the approach to other MPS3 materials (M = Mn, Co, Zn), establishing a generalized platform for developing high-performance OER catalysts. This work represents a significant advancement in the application of restacked vdW heterostructures as a foundation for advanced electrocatalytic materials.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Shuhui Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Yang Hu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Shanshan Wu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Jiamin Zhu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Li An
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
2
|
Ashton E, Brenton M, Wilson JG, Barton JP, Wilson R, Strickland D, Kondrat SA, Clement N, Wertz J, Zhang J. Evaluation of the Catalytic Effect of Metal Additives on the Performance of a Combined Battery and Electrolyzer System. ACS APPLIED ENERGY MATERIALS 2025; 8:1112-1125. [PMID: 39886449 PMCID: PMC11776374 DOI: 10.1021/acsaem.4c02648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025]
Abstract
A low-cost method of green hydrogen production via the modification of a lead acid battery has been achieved, resulting in a hydrogen flow rate of 5.3 L min-1 from a 20-cell string. The electrochemical behavior and catalytic effect of various metal additives on the hydrogen evolution reaction (HER) was evaluated using cyclic voltammetry. Nickel, cobalt, antimony, manganese, and iron were investigated, with 66 ppm nickel achieving a 75% increase in hydrogen produced from a modified lead acid battery. Design of Experiments (DOE) employing a simple centroid design model to analyze the combined additive effects of nickel, cobalt, and antimony was performed to evaluate the effect on the HER. A combination of Ni:Co:Sb in the ratio 66:17:17 ppm achieved the greatest end voltage shift of the HER from -1.65 to -1.50 V; however, no increase in hydrogen yield was observed in comparison to 66 ppm of nickel when added to a full-scale cell. Gas chromatography using a thermal conductive detector and a sulfur chemiluminescence detector were used to measure the purity of hydrogen obtained from a string of 20 battery electrolyzer cells connected in series. 99% purity hydrogen gas was obtained from the battery electrolyzer cells, with H2S impurities below the limit of detection (0.221 ppm).
Collapse
Affiliation(s)
- Elizabeth Ashton
- CREST,
Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, U.K.
| | - Matthew Brenton
- CREST,
Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, U.K.
| | - Jonathan G. Wilson
- CREST,
Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, U.K.
| | - John P. Barton
- CREST,
Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, U.K.
| | - Richard Wilson
- CREST,
Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, U.K.
| | - Danielle Strickland
- CREST,
Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, U.K.
| | - Simon. A. Kondrat
- Department
of Chemistry, School of Science, Loughborough
University, Loughborough LE11 3TU, U.K.
| | - Nicolas. Clement
- Hollingsworth
and Vose, Groton, Massachusetts 01450, United States
| | - John. Wertz
- Hollingsworth
and Vose, Groton, Massachusetts 01450, United States
| | - Jibo. Zhang
- Hollingsworth
and Vose, Groton, Massachusetts 01450, United States
| |
Collapse
|
3
|
Feng Z, Meng H, Fu Y, Ren L, Gao B, Liu W. Modulation of Charge Redistribution in Heterogeneous CoSe-Ni 0.95Se Coupling with Ti 3C 2T x MXene for Hydrazine-Assisted Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403270. [PMID: 39444204 DOI: 10.1002/smll.202403270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/11/2024] [Indexed: 10/25/2024]
Abstract
Integrating abundant dual sites of hydrazine oxidation reaction (HzOR) and hydrogen evolution reaction (HER) into one catalyst is extremely urgent toward energy-saving H2 production. Herein, CoSe-Ni0.95Se heterostructure coupling with Ti3C2Tx MXene (CoSe-Ni0.95Se/MXene) is fabricated on nickel foam (NF) to enhance the catalytic performance. The heterogeneous CoSe-Ni0.95Se and MXene coupling effect can change the coordination of Ni and Co, resulting in adjusted interfacial electronic field and enhanced electron transfer from Ni0.95Se to CoSe especially near MXene surface. Also, the appearance of MXene can anchor more active sites, thereby abundant nucleophilic CoSe and electrophilic Ni0.95Se are formed induced by the charge redistribution, which can tailor d-band center, moderate *H adsorption free energy (∆GH *) and facilitate adsorption/desorption for hydrazine intermediates, contributing to much enhanced HER and HzOR performance. For example, the low potentials of -160.8 and 116.1 mV at 400 mA cm-2 are seen for HER and HzOR with long-term stability of 7 days. When assembled as overall hydrazine splitting (OHzS), a small cell voltage of 0.35 V to drive 100 mA cm-2 is obtained. Such concept of integrating abundant nucleophilic and electrophilic dual sites and regulating their d-band centers can offer in-depth understandings to design efficient bifunctional HER and HzOR electrocatalysts.
Collapse
Affiliation(s)
- Zhongbao Feng
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang, 110819, China
- Engineering Research Center of Frontier Technologies for Low-carbon Steelmaking (Ministry of Education), Northeastern University, Shenyang, 110819, China
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Haoyu Meng
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Yumo Fu
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Lili Ren
- Shenyang Aircraft Industry (Group) Co. Ltd., Shenyang, 110034, China
| | - Bo Gao
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Wentao Liu
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
4
|
Jiang Y, Sun H, Guo J, Liang Y, Qin P, Yang Y, Luo L, Leng L, Gong X, Wu Z. Vacancy Engineering in 2D Transition Metal Chalcogenide Photocatalyst: Structure Modulation, Function and Synergy Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310396. [PMID: 38607299 DOI: 10.1002/smll.202310396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/08/2024] [Indexed: 04/13/2024]
Abstract
Transition metal chalcogenides (TMCs) are widely used in photocatalytic fields such as hydrogen evolution, nitrogen fixation, and pollutant degradation due to their suitable bandgaps, tunable electronic and optical properties, and strong reducing ability. The unique 2D malleability structure provides a pre-designed platform for customizable structures. The introduction of vacancy engineering makes up for the shortcomings of photocorrosion and limited light response and provides the greatest support for TMCs in terms of kinetics and thermodynamics in photocatalysis. This work reviews the effect of vacancy engineering on photocatalytic performance based on 2D semiconductor TMCs. The characteristics of vacancy introduction strategies are summarized, and the development of photocatalysis of vacancy engineering TMCs materials in energy conversion, degradation, and biological applications is reviewed. The contribution of vacancies in the optical range and charge transfer kinetics is also discussed from the perspective of structure manipulation. Vacancy engineering not only controls and optimizes the structure of the TMCs, but also improves the optical properties, charge transfer, and surface properties. The synergies between TMCs vacancy engineering and atomic doping, other vacancies, and heterojunction composite techniques are discussed in detail, followed by a summary of current trends and potential for expansion.
Collapse
Affiliation(s)
- Yi Jiang
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Haibo Sun
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Jiayin Guo
- School of Resources and Environment, Hunan University of Technology and Business, Changsha, 410205, P. R. China
| | - Yunshan Liang
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Pufeng Qin
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Yuan Yang
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Lin Luo
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Xiaomin Gong
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Zhibin Wu
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| |
Collapse
|
5
|
Sun L, Zhao S, Tang X, Yu Q, Gao F, Liu J, Wang Y, Zhou Y, Yi H. Recent advances in catalytic oxidation of VOCs by two-dimensional ultra-thin nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170748. [PMID: 38340848 DOI: 10.1016/j.scitotenv.2024.170748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Catalytic oxidation, an end-of-pipe treatment technology for effectively purifying volatile organic compounds (VOCs), has received widespread attention. The crux of catalytic oxidation lies in the development of efficient catalysts, with their optimization necessitating a comprehensive analysis of the catalytic reaction mechanism. Two-dimensional (2D) ultra-thin nanomaterials offer significant advantages in exploring the catalytic oxidation mechanism of VOCs due to their unique structure and properties. This review classifies strategies for regulating catalytic properties and typical applications of 2D materials in VOCs catalytic oxidation, in addition to their characteristics and typical characterization techniques. Furthermore, the possible reaction mechanism of 2D Co-based and Mn-based oxides in the catalytic oxidation of VOCs is analyzed, with a special focus on the synergistic effect between oxygen and metal vacancies. The objective of this review is to provide valuable references for scholars in the field.
Collapse
Affiliation(s)
- Long Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shunzheng Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Xiaolong Tang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Qingjun Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fengyu Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ya Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuansong Zhou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Honghong Yi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
6
|
Fu Q, Wong LW, Zheng F, Zheng X, Tsang CS, Lai KH, Shen W, Ly TH, Deng Q, Zhao J. Unraveling and leveraging in situ surface amorphization for enhanced hydrogen evolution reaction in alkaline media. Nat Commun 2023; 14:6462. [PMID: 37833368 PMCID: PMC10575887 DOI: 10.1038/s41467-023-42221-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Surface amorphization provides electrocatalysts with more active sites and flexibility. However, there is still a lack of experimental observations and mechanistic explanations for the in situ amorphization process and its crucial role. Herein, we propose the concept that by in situ reconstructed amorphous surface, metal phosphorus trichalcogenides could intrinsically offer better catalytic performance for the alkaline hydrogen production. Trace Ru (0.81 wt.%) is doped into NiPS3 nanosheets for alkaline hydrogen production. Using in situ electrochemical transmission electron microscopy technique, we confirmed the amorphization process occurred on the edges of NiPS3 is critical for achieving superior activity. Comprehensive characterizations and theoretical calculations reveal Ru primarily stabilized at edges of NiPS3 through in situ formed amorphous layer containing bridging S22- species, which can effectively reduce the reaction energy barrier. This work emphasizes the critical role of in situ formed active layer and suggests its potential for optimizing catalytic activities of electrocatalysts.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, China
| | - Lok Wing Wong
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, China
| | - Fangyuan Zheng
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, China
| | - Xiaodong Zheng
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, China
| | - Chi Shing Tsang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, China
| | - Ka Hei Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, China
| | - Wenqian Shen
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, China
| | - Thuc Hue Ly
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, China.
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| | - Qingming Deng
- Phyics Department and Jiangsu Key Laboratory for Chemistry of Low-Demensional Materials, Huaiyin Normal University, Huaian, China.
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
7
|
Zhang B, Qian X, Xu H, Jiang L, Xia J, Chen H, He G. Se-doping-induced sulfur vacancy engineering of CuCo 2S 4 nanosheets for enhanced electrocatalytic overall water splitting. NANOSCALE 2023; 15:16199-16208. [PMID: 37779388 DOI: 10.1039/d3nr03609j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The coordination of the electronic structure and charge transfer through heteroatomic doping and sulfur vacancies is one of the most vital strategies for enhancing the electrocatalytic performance of the oxygen and hydrogen evolution reactions (OER, HER) through water splitting. Se-doped CuCo2S4 nanosheets (CuCo2S3.68Se0.32) with abundant sulfur vacancies were synthesized via a simple hydrothermal method to achieve remarkably efficient electrocatalytic water splitting. Importantly, incorporating Se in three-dimensional nanosheet structures effectively fine-tunes the electronic structure, ensuring ample accessibility of active sites for swift charge carrier transfer and improved reaction kinetics. The optimized CuCo2S3.68Se0.32 offers substantially high electrocatalytic activity with overpotentials of 65 and 230 mV at the current density of 10 mA cm-2 for HER and OER, respectively, which is comparable to commercial catalysts. Combining Se-doping and rich sulfur vacancies facilitates fast charge transport, thus significantly boosting the electrocatalytic activity. Furthermore, utilizing CuCo2S3.68Se0.32 as both the cathode and anode, a two-electrode electrolyser exhibits remarkable performance. It achieves a low voltage of 1.52 V at 10 mA cm-2 and demonstrates exceptional durability over time. This study investigates the significance of doping and vacancies in enhancing electrocatalytic activity for water splitting.
Collapse
Affiliation(s)
- Bianli Zhang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Xingyue Qian
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Lin Jiang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Jiawei Xia
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China.
| |
Collapse
|
8
|
Attarzadeh N, Das D, Chintalapalle SN, Tan S, Shutthanandan V, Ramana CV. Nature-Inspired Design of Nano-Architecture-Aligned Ni 5P 4-Ni 2P/NiS Arrays for Enhanced Electrocatalytic Activity of Hydrogen Evolution Reaction (HER). ACS APPLIED MATERIALS & INTERFACES 2023; 15:22036-22050. [PMID: 37099741 DOI: 10.1021/acsami.3c00781] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The projection of developing sustainable and cost-efficient electrocatalysts for hydrogen production is booming. However, the full potential of electrocatalysts fabricated from earth-abundant metals has yet to be exploited to replace Pt-group metals due to inadequate efficiency and insufficient design strategies to meet the ever-increasing demands for renewable energies. To improve the electrocatalytic performance, the primary challenge is to optimize the structure and electronic properties by enhancing the intrinsic catalytic activity and expanding the active catalytic surface area. Herein, we report synthesizing a 3D nanoarchitecture of aligned Ni5P4-Ni2P/NiS (plate/nanosheets) using a phospho-sulfidation process. The durability and unique design of prickly pear cactus in desert environments by adsorbing moisture through its extensive surface and ability to bear fruits at the edges of leaves inspire this study to adopt a similar 3D architecture and utilize it to design an efficient heterostructure catalyst for HER activity. The catalyst comprises two compartments of the vertically aligned Ni5P4-Ni2P plates and the NiS nanosheets, resembling the role of leaves and fruits in the prickly pear cactus. The Ni5P4-Ni2P plates deliver charges to the interface areas, and the NiS nanosheets significantly influence Had and transfer electrons for the HER activity. Indeed, the synergistic presence of heterointerfaces and the epitaxial NiS nanosheets can substantially improve the catalytic activity compared to nickel phosphide catalysts. Notably, the onset overpotential of the best-modified ternary catalysts exhibits (35 mV) half the potential required for nickel phosphide catalysts. This promising catalyst demonstrates 70 and 115 mV overpotentials to attain current densities of 10 and 100 mA cm-2, respectively. The obtained Tafel slope is 50 mV dec-1, and the measured double-layer capacitance from cyclic voltammetry (CV) for the best ternary electrocatalyst is 13.12 mF cm-2, 3 times more than the nickel phosphide electrocatalyst. Further, electrochemical impedance spectroscopy (EIS) at the cathodic potentials reveals that the lowest charge transfer resistance is linked to the best ternary electrocatalyst, ranging from 430 to 1.75 Ω cm-2. This improvement can be attributed to the acceleration of the electron exchangeability at the interfaces. Our findings demonstrate that the epitaxial NiS nanosheets expand the active catalytic surface area and simultaneously elevate the intrinsic catalytic activity by introducing heterointerfaces, which leads to accommodating more Had at the interfaces.
Collapse
Affiliation(s)
- Navid Attarzadeh
- Centre for Advanced Materials Research (CMR), University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, United States
- Environmental Science and Engineering, University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, United States
| | - Debabrata Das
- Centre for Advanced Materials Research (CMR), University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, United States
| | - Srija N Chintalapalle
- Centre for Advanced Materials Research (CMR), University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, United States
| | - Susheng Tan
- Department of Electrical and Computer Engineering, Petersen Institute of NanoScience and Engineering, University of Pittsburg, Pittsburgh, Pennsylvania 15261, United States
| | - V Shutthanandan
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - C V Ramana
- Centre for Advanced Materials Research (CMR), University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, United States
- Department of Mechanical Engineering, University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, United States
| |
Collapse
|
9
|
Wang H, Han X, Zhang L, Wang K, Zhang R, Wang X, Song S, Zhang H. Integrating ceria with cobalt sulfide as high-performance electrocatalysts for overall water splitting. FUNDAMENTAL RESEARCH 2023; 3:356-361. [PMID: 38933759 PMCID: PMC11197577 DOI: 10.1016/j.fmre.2021.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
The development of bifunctional electrocatalysts for overall water splitting is highly desired for converting electricity into chemical energy. However, the synthesis of high-performance bifunctional electrocatalysts remains a pressing challenge. Here, we found that both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) performance of the Co3S4 electrode can be significantly improved by integration with CeO2. Specifically, as-prepared 5% Ce-Co3S4 and 1% Ce-Co3S4 delivered low overpotentials of 290 and 257 mV to achieve 10 mA cm-2 for the OER and HER in 1.0 M KOH, respectively. The crucial role of CeO2 originated from its unique surface with abundant oxygen vacancies, which were beneficial for the stabilization of Co2+ sites with high OER activity and both the adsorption and dissociation of water molecules in the HER process. This work is expected to provide a general approach to prepare a wide range of high-performance electrode materials for energy-related applications.
Collapse
Affiliation(s)
- Huilin Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoxiao Han
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Lingling Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ke Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Rui Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Zhang H, Wei T, Qiu Y, Zhang S, Liu Q, Hu G, Luo J, Liu X. Recent Progress in Metal Phosphorous Chalcogenides: Potential High-Performance Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207249. [PMID: 36605005 DOI: 10.1002/smll.202207249] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Since the discovery of graphene, research on the family of 2D materials has been a thriving field. Metal phosphorous chalcogenides (MPX3 ) have attracted renewed attention due to their distinctive physical and chemical properties. The advantages of MPX3 , such as tunable layered structures, unique electronic properties, thermodynamically appropriate band alignments and abundant catalytic active sites on the surface, make MPX3 material great potential in electrocatalysis. In this review, the applications of MPX3 electrocatalysts in recent years, including hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction, are summarized. Structural regulation, chemical doping and multi-material composite that are often effective and practical research methods to further optimize the catalytic properties of these materials, are introduced. Finally, the challenges and opportunities for electrocatalytic applications of MPX3 materials are discussed. This report aims to advance future efforts to develop MPX3 and related materials for electrocatalysis.
Collapse
Affiliation(s)
- Hao Zhang
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tianran Wei
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning, 530004, China
| | - Yuan Qiu
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Guangzhi Hu
- School of Chemical Science and Technology, School of Energy, Yunnan University, Kunming, 650091, China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen, 518110, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
11
|
Feng D, Zhang S, Tong Y, Dong X. Dual-anions engineering of bimetallic oxides as highly active electrocatalyst for boosted overall water splitting. J Colloid Interface Sci 2022; 623:467-475. [PMID: 35597016 DOI: 10.1016/j.jcis.2022.05.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 01/20/2023]
Abstract
Bimetallic oxides have unique advantages in driving both oxygen and hydrogen evolution reactions (OER/HER). Surface engineering of bimetallic oxides is a promising way to boost the catalytic activity by the regulation of electronic structure and surface property. Herein, a dual P, S-anions modification strategy is developed to optimize the catalytic performance of CoMoO4 nanowire arrays. The formations of CoP and Co3S4 species on the CoMoO4 surface bring heterojunction interfaces for more catalytic active sites and strong electronic interaction for faster interfacial charge transfer. Benefiting from these advantages, the P, S-CoMoO4 catalyst on nickel foam (NF) delivers excellent catalytic activity and stability. The overpotentials at 10 mA cm-2 of P, S-CoMoO4/NF for HER are just 31 mV in acid media and 58 mV in alkaline media, respectively. In addition, by assembling the P, S-CoMoO4/NF as bifunctional electrodes for overall water splitting, the electrolyzer exhibits a voltage of as low as 1.66 V at a current density of 50 mA cm-2. This work put forward a new avenue for the development of advanced bifunctional electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Dongmei Feng
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shishen Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yun Tong
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xiaoping Dong
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
12
|
Li X, Zheng K, Zhang J, Li G, Xu C. Engineering Sulfur Vacancies in Spinel-Phase Co 3S 4 for Effective Electrocatalysis of the Oxygen Evolution Reaction. ACS OMEGA 2022; 7:12430-12441. [PMID: 35449953 PMCID: PMC9016852 DOI: 10.1021/acsomega.2c01423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 05/03/2023]
Abstract
Restricted by the sluggish kinetics of the oxygen evolution reaction (OER), efficient OER catalysis remains a challenge. Here, a facile strategy was proposed to prepare a hollow dodecahedron constructed by vacancy-rich spinel Co3S4 nanoparticles in a self-generated H2S atmosphere of thiourea. The morphology, composition, and electronic structure, especially the sulfur vacancy, of the cobalt sulfides can be regulated by the dose of thiourea. Benefitting from the H2S atmosphere, the anion exchange process and vacancy introduction can be accomplished simultaneously. The resulting catalyst exhibits excellent catalytic activity for the OER with a low overpotential of 270 mV to reach a current density of 10 mA cm-2 and a small Tafel slope of 59 mV dec-1. Combined with various characterizations and electrochemical tests, the as-proposed defect engineering method could delocalize cobalt neighboring electrons and expose more Co2+ sites in spinel Co3S4, which lowers the charge transfer resistance and facilitates the formation of Co3+ active sites during the preactivation process. This work paves a new way for the rational design of vacancy-enriched transition metal-based catalysts toward an efficient OER.
Collapse
Affiliation(s)
- Xiaomin Li
- School
of Chemical Engineering and Technology, State Key Laboratory of Chemical
Engineering, Chemical Engineering Research Center, Tianjin University, Tianjin 300072, China
| | - Kaitian Zheng
- School
of Chemical Engineering and Technology, State Key Laboratory of Chemical
Engineering, Chemical Engineering Research Center, Tianjin University, Tianjin 300072, China
| | - Jiajun Zhang
- Particles
and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Guoning Li
- School
of Thermal Engineering, Shandong Jianzhu
University, Jinan 250101, China
| | - Chunjian Xu
- School
of Chemical Engineering and Technology, State Key Laboratory of Chemical
Engineering, Chemical Engineering Research Center, Tianjin University, Tianjin 300072, China
| |
Collapse
|
13
|
Liu Y, Vijayakumar P, Liu Q, Sakthivel T, Chen F, Dai Z. Shining Light on Anion-Mixed Nanocatalysts for Efficient Water Electrolysis: Fundamentals, Progress, and Perspectives. NANO-MICRO LETTERS 2022; 14:43. [PMID: 34981288 PMCID: PMC8724338 DOI: 10.1007/s40820-021-00785-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/03/2021] [Indexed: 05/12/2023]
Abstract
This review introduces recent advances of various anion-mixed transition metal compounds (e.g., nitrides, halides, phosphides, chalcogenides, (oxy)hydroxides, and borides) for efficient water electrolysis applications in detail. The challenges and future perspectives are proposed and analyzed for the anion-mixed water dissociation catalysts, including polyanion-mixed and metal-free catalyst, progressive synthesis strategies, advanced in situ characterizations, and atomic level structure-activity relationship. Hydrogen with high energy density and zero carbon emission is widely acknowledged as the most promising candidate toward world's carbon neutrality and future sustainable eco-society. Water-splitting is a constructive technology for unpolluted and high-purity H2 production, and a series of non-precious electrocatalysts have been developed over the past decade. To further improve the catalytic activities, metal doping is always adopted to modulate the 3d-electronic configuration and electron-donating/accepting (e-DA) properties, while for anion doping, the electronegativity variations among different non-metal elements would also bring some potential in the modulations of e-DA and metal valence for tuning the performances. In this review, we summarize the recent developments of the many different anion-mixed transition metal compounds (e.g., nitrides, halides, phosphides, chalcogenides, oxyhydroxides, and borides/borates) for efficient water electrolysis applications. First, we have introduced the general information of water-splitting and the description of anion-mixed electrocatalysts and highlighted their complementary functions of mixed anions. Furthermore, some latest advances of anion-mixed compounds are also categorized for hydrogen and oxygen evolution electrocatalysis. The rationales behind their enhanced electrochemical performances are discussed. Last but not least, the challenges and future perspectives are briefly proposed for the anion-mixed water dissociation catalysts.
Collapse
Affiliation(s)
- Yaoda Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Paranthaman Vijayakumar
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Qianyi Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Thangavel Sakthivel
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Fuyi Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Zhengfei Dai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
14
|
Wen X, Yang X, Li S, Li L, Qu Q. Hybrid Transition Metal (V, Fe, and Co) Oxide/Sulfide Catalyst for High-efficient Overall Water Splitting. NEW J CHEM 2022. [DOI: 10.1039/d1nj05876b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen is an ideal clean energy without any carbon emissions and producing hydrogen by water electrolysis is also eco-friendly and efficient. Herein we proposed a universal strategy of synthesizing transition...
Collapse
|
15
|
Xu X, Su L, Zhang Y, Dong L, Miao X. The hybrid engineering of crystalline NiSe x nanorod arrays with amorphous Ni–P film towards promoted overall water electrocatalysis. NEW J CHEM 2022. [DOI: 10.1039/d2nj00608a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A superhydrophilic hetero-nanostructured material composed of amorphous Ni–P film and crystalline NiSex nanorod arrays on Ni foam (denoted as Ni–P/NiSex/NF) was synthesized through a facile hydrothermal reaction combined with an electrodeposition process, and it possessed outstanding electrocatalytic performance toward OWS and outstanding durability.
Collapse
Affiliation(s)
- Xiaohu Xu
- Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, College of Physics and Information Engineering, Shanxi Normal University, No. 339 Taiyu road, Xiaodian District, Taiyuan 030031, China
| | - Le Su
- Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, College of Physics and Information Engineering, Shanxi Normal University, No. 339 Taiyu road, Xiaodian District, Taiyuan 030031, China
| | - Yujie Zhang
- Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, College of Physics and Information Engineering, Shanxi Normal University, No. 339 Taiyu road, Xiaodian District, Taiyuan 030031, China
| | - Lijuan Dong
- Shanxi Provincial Key Laboratory of Microstructure Electromagnetic Functional Materials, Shanxi Datong University, Xingyun street, Nanjiao District, Datong, 037009, China
| | - Xiangyang Miao
- Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, College of Physics and Information Engineering, Shanxi Normal University, No. 339 Taiyu road, Xiaodian District, Taiyuan 030031, China
| |
Collapse
|
16
|
Li S, Wang H, Ma Z, Xiao Q, Gao Q, Jiang Y, Shen W, He R, Li M. Rapid Surface Reconstruction of Amorphous Co(OH) 2 /WO x with Rich Oxygen Vacancies to Promote Oxygen Evolution. CHEMSUSCHEM 2021; 14:5534-5540. [PMID: 34709735 DOI: 10.1002/cssc.202102020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Herein, a transition metal dissolution-oxygen vacancy strategy, based on dissolution of highly oxidized transition metal species in alkaline electrolyte, was suggested to construct a high-performance amorphous Co(OH)2 /WOx (a-CoW) catalyst for the oxygen evolution reaction (OER). The surface reconstruction of a-CoW and its evolution were described by regulating oxygen vacancies. With continuous dissolution of W species, oxygen vacancies on the surface were generated rapidly, the surface reconstruction was promoted, and the OER performance was improved significantly. During the surface reconstruction, W species also played a role in electronic modulation for Co. Due to its rapid surface reconstruction, a-CoW exhibited excellent OER performance in alkaline electrolyte with an overpotential of 208 mV at 10 mA cm-2 and had long-term stability for at least 120 h. This work shows that the transition metal dissolution-oxygen vacancy strategy is effective for preparation of high-performance catalysts.
Collapse
Affiliation(s)
- Sijun Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Hua Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Zemian Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Qinglan Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Qin Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Yimin Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Wei Shen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
17
|
Wu D, Chen P, Feng D, Song J, Tong Y. Highly efficient electrochemical reduction of carbon dioxide to formate on Sn modified Bi 2O 3 heterostructure. Dalton Trans 2021; 50:14120-14124. [PMID: 34611683 DOI: 10.1039/d1dt02586d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, Sn species are deposited onto the surface of a Bi2O3 material by a facile disproportionated reaction and the prepared catalyst shows a superior electrocatalytic performance towards CO2 reduction. The deposition of Sn atoms can donate electrons to the Bi2O3 material and increase its electrical conductivity. The SnM-Bi2O3 catalyst with the optimal Sn content delivers a high faradaic efficiency of 95.8% at -1.0 V for formate production. In addition, the partial current density of formate can reach 41.8 mA cm-2. The SnM-Bi2O3 catalyst also exhibits superior stability towards long-term electrolysis. The modification of Sn species not only helps to stabilize the reaction intermediate but also inhibits the hydrogen evolution reaction (HER) pathway, achieving the synergetic enhancement of catalytic activity.
Collapse
Affiliation(s)
- Doufeng Wu
- Department of Chemistry, School of Sciences, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China.
| | - Pengzuo Chen
- Department of Chemistry, School of Sciences, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China.
| | - Dongmei Feng
- Department of Chemistry, School of Sciences, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China.
| | - Jiajia Song
- Department of Chemistry, School of Sciences, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China.
| | - Yun Tong
- Department of Chemistry, School of Sciences, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China.
| |
Collapse
|
18
|
Lu XF, Zhang SL, Sim WL, Gao S, Lou XW(D. Phosphorized CoNi
2
S
4
Yolk‐Shell Spheres for Highly Efficient Hydrogen Production via Water and Urea Electrolysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xue Feng Lu
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Song Lin Zhang
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Wei Lok Sim
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Shuyan Gao
- School of Materials Science and Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Xiong Wen (David) Lou
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
19
|
Lou XWD. Phosphorized CoNi2S4 Yolk-Shell Spheres for Highly Efficient Hydrogen Production via Water and Urea Electrolysis. Angew Chem Int Ed Engl 2021; 60:22885-22891. [PMID: 34351663 DOI: 10.1002/anie.202108563] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Indexed: 11/09/2022]
Abstract
Exploring earth-abundant electrocatalysts with excellent activity, robust stability, and multiple functions is crucial for electrolytic hydrogen generation. Herein, porous phosphorized CoNi 2 S 4 yolk-shell spheres (P-CoNi 2 S 4 YSSs) are rationally designed and synthesized by a combined hydrothermal sulfidation and gas-phase phosphorization strategy. Benefiting from the strengthened Ni 3+ /Ni 2+ couple, enhanced electric conductivity, and hollow structure, the P-CoNi 2 S 4 YSSs exhibit excellent activity and durability towards hydrogen/oxygen evolution and urea oxidation reactions in alkaline solution, affording low potentials of -0.135 V, 1.512 V, and 1.306 V (versus reversible hydrogen electrode) at 10 mA cm -2 , respectively. Remarkably, when used as the anode and cathode simultaneously, the P-CoNi 2 S 4 catalyst merely requires a cell voltage of 1.544 V in water splitting and 1.402 V in urea electrolysis to attain 10 mA cm -2 with excellent durability for 100 h, outperforming most of the reported nickel-based sulfides and even noble-metal-based electrocatalysts. This work therefore not only promotes the application of sulfides in electrochemical hydrogen production but also provides a feasible approach for urea-rich wastewater treatment.
Collapse
Affiliation(s)
- Xiong-Wen David Lou
- Nanyang Technological University, School of Chemical and Biomedical Eng, 62 Nanyang Drive, #N1.2-B1-09, 637459, Singapore, SINGAPORE
| |
Collapse
|