1
|
Miao J, Lin C, Yuan X, An Y, Yang Y, Li Z, Zhang K. Supramolecular catalyst with [FeCl 4] unit boosting photoelectrochemical seawater splitting via water nucleophilic attack pathway. Nat Commun 2024; 15:2023. [PMID: 38448472 PMCID: PMC10918074 DOI: 10.1038/s41467-024-46342-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Propelled by the structure of water oxidation co-catalysts in natural photosynthesis, molecular co-catalysts have long been believed to possess the developable potential in artificial photosynthesis. However, the interfacial complexity between light absorber and molecular co-catalyst limits its structural stability and charge transfer efficiency. To overcome the challenge, a supramolecular scaffold with the [FeCl4] catalytic units is reported, which undergo a water-nucleophilic attack of the water oxidation reaction, while the supramolecular matrix can be in-situ grown on the surface of photoelectrode through a simple chemical polymerization to be a strongly coupled interface. A well-defined BiVO4 photoanode hybridized with [FeCl4] units in polythiophene reaches 4.72 mA cm-2 at 1.23 VRHE, which also exhibits great stability for photoelectrochemical seawater splitting due to the restraint on chlorine evolution reaction by [FeCl4] units and polythiophene. This work provides a novel solution to the challenge of the interface charge transfer of molecular co-catalyst hybridized photoelectrode.
Collapse
Affiliation(s)
- Jiaming Miao
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Cheng Lin
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiaojia Yuan
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yang An
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yan Yang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhaosheng Li
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, 22 Hankou Road, Nanjing, 210093, China.
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093, China.
| | - Kan Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
2
|
Zens C, Friebe C, Schubert US, Richter M, Kupfer S. Tailored Charge Transfer Kinetics in Precursors for Organic Radical Batteries: A Joint Synthetic-Theoretical Approach. CHEMSUSCHEM 2023; 16:e202201679. [PMID: 36315938 PMCID: PMC10099747 DOI: 10.1002/cssc.202201679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The development of sustainable energy storage devices is crucial for the transformation of our energy management. In this scope, organic batteries attracted considerable attention. To overcome the shortcomings of typically applied materials from the classes of redox-active conjugated polymers (i. e., unstable cell voltages) and soft matter-embedded stable organic radicals (i. e., low conductivity), a novel design concept was introduced, integrating such stable radicals within a conductive polymer backbone. In the present theory-driven design approach, redox-active (2,2,6,6-tetramethylpiperidin-1-yl)oxyls (TEMPOs) were incorporated in thiophene-based polymer model systems, while structure-property relationships governing the thermodynamic properties as well as the charge transfer kinetics underlying the charging and discharging processes were investigated in a systematical approach. Thereby, the impact of the substitution pattern, the length as well as the nature of the chemical linker, and the ratio of TEMPO and thiophene units was studied using state-of-the-art quantum chemical and quantum dynamical simulations for a set of six molecular model systems. Finally, two promising candidates were synthesized and electrochemically characterized, paving the way to applications in the frame of novel organic radical batteries.
Collapse
Affiliation(s)
- Clara Zens
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Christian Friebe
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaHumboldtstraße 1007743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaHumboldtstraße 1007743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Martin Richter
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- DS Deutschland GmbHAm Kabellager 11–1351063CologneGermany
| | - Stephan Kupfer
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| |
Collapse
|
3
|
Das R, Sarkar S, Kumar R, D. Ramarao S, Cherevotan A, Jasil M, Vinod CP, Singh AK, Peter SC. Noble-Metal-Free Heterojunction Photocatalyst for Selective CO2 Reduction to Methane upon Induced Strain Relaxation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04587] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Risov Das
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Shreya Sarkar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Ritesh Kumar
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Seethiraju D. Ramarao
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Arjun Cherevotan
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Mohammed Jasil
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Chathakudath. P. Vinod
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 410008, India
| | | | - Sebastian C. Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
4
|
Belić J, Förster A, Menzel JP, Buda F, Visscher L. Automated assessment of redox potentials for dyes in dye-sensitized photoelectrochemical cells. Phys Chem Chem Phys 2021; 24:197-210. [PMID: 34878470 PMCID: PMC8694061 DOI: 10.1039/d1cp04218a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022]
Abstract
Sustainable solutions for hydrogen production, such as dye-sensitized photoelectrochemical cells (DS-PEC), rely on the fundamental properties of its components whose modularity allows for their separate investigation. In this work, we design and execute a high-throughput scheme to tune the ground state oxidation potential (GSOP) of perylene-type dyes by functionalizing them with different ligands. This allows us to identify promising candidates which can then be used to improve the cell's efficiency. First, we investigate the accuracy of different theoretical approaches by benchmarking them against experimentally determined GSOPs. We test different methods to calculate the vertical oxidation potential, including GW with different levels of self-consistency, Kohn-Sham (KS) orbital energies and total energy differences. We find that there is little difference in the performance of these methods. However, we show that it is crucial to take into account solvent effects as well as the structural relaxation of the dye after oxidation. Other thermodynamic contributions are negligible. Based on this benchmark, we decide on an optimal strategy, balancing computational cost and accuracy, to screen more than 1000 dyes and identify promising candidates which could be used to construct more robust DS-PECs.
Collapse
Affiliation(s)
- Jelena Belić
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands.
| | - Arno Förster
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands.
| | - Jan Paul Menzel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Francesco Buda
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Lucas Visscher
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|