1
|
Skala ME, Zeitler SM, Golder MR. Liquid-assisted grinding enables a direct mechanochemical functionalization of polystyrene waste. Chem Sci 2024; 15:10900-10907. [PMID: 39027266 PMCID: PMC11253180 DOI: 10.1039/d4sc03362k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
The plastic waste crisis has grave consequences for our environment, as most single-use commodity polymers remain in landfills and oceans long after their commercial lifetimes. Utilizing modern synthetic techniques to chemically modify the structure of these post-consumer plastics (e.g., upcycling) can impart new properties and added value for commercial applications. To expand beyond the abilities of current solution-state chemical processes, we demonstrate post-polymerization modification of polystyrene via solid-state mechanochemistry enabled by liquid-assisted grinding (LAG). Importantly, this emblematic trifluoromethylation study modifies discarded plastic, including dyed materials, using minimal exogenous solvent and plasticizers for improved sustainability. Ultimately, this work serves as a proof-of-concept for the direct mechanochemical post-polymerization modification of commodity polymers, and we expect future remediation of plastic waste via similar mechanochemical reactions.
Collapse
Affiliation(s)
- Morgan E Skala
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| | - Sarah M Zeitler
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| | - Matthew R Golder
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| |
Collapse
|
2
|
Park J, Kim A, Kim BS. Anionic ring-opening polymerization of functional epoxide monomers in the solid state. Nat Commun 2023; 14:5855. [PMID: 37730802 PMCID: PMC10511433 DOI: 10.1038/s41467-023-41576-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 09/08/2023] [Indexed: 09/22/2023] Open
Abstract
Despite recent advancements in mechanochemical polymerization, understanding the unique mechanochemical reactivity during the ball milling polymerization process still requires extensive investigations. Herein, solid-state anionic ring-opening polymerization is used to synthesize polyethers from various functional epoxide monomers. The critical parameters of the monomers are investigated to elucidate the unique reactivity of ball milling polymerization. The controllable syntheses of the desired polyethers are characterized via NMR, GPC, and MALDI-ToF analyses. Interestingly, bulky monomers exhibit faster conversions in the solid-state in clear contrast to that observed for solution polymerization. Particularly, a close linear correlation is observed between the conversion of the ball milling polymerization and melting point of the functional epoxide monomers, indicating melting point as a critical predictor of mechanochemical polymerization reactivity. This study provides insights into the efficient design and understanding of mechanochemical polymerization.
Collapse
Affiliation(s)
- Jihye Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ahyun Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
3
|
Bartalucci E, Schumacher C, Hendrickx L, Puccetti F, d'Anciães Almeida Silva I, Dervişoğlu R, Puttreddy R, Bolm C, Wiegand T. Disentangling the Effect of Pressure and Mixing on a Mechanochemical Bromination Reaction by Solid-State NMR Spectroscopy. Chemistry 2023; 29:e202203466. [PMID: 36445819 DOI: 10.1002/chem.202203466] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
Mechanical forces, including compressive stresses, have a significant impact on chemical reactions. Besides the preparative opportunities, mechanochemical conditions benefit from the absence of any organic solvent, the possibility of a significant synthetic acceleration and unique reaction pathways. Together with an accurate characterization of ball-milling products, the development of a deeper mechanistic understanding of the occurring transformations at a molecular level is critical for fully grasping the potential of organic mechanosynthesis. We herein studied a bromination of a cyclic sulfoximine in a mixer mill and used solid-state nuclear magnetic resonance (NMR) spectroscopy for structural characterization of the reaction products. Magic-angle spinning (MAS) was applied for elucidating the product mixtures taken from the milling jar without introducing any further post-processing on the sample. Ex situ 13 C-detected NMR spectra of ball-milling products showed the formation of a crystalline solid phase with the regioselective bromination of the S-aryl group of the heterocycle in position 4. Completion is reached in less than 30 minutes as deduced from the NMR spectra. The bromination can also be achieved by magnetic stirring, but then, a longer reaction time is required. Mixing the solid educts in the NMR rotor allows to get in situ insights into the reaction and enables the detection of a reaction intermediate. The pressure alone induced in the rotor by MAS is not sufficient to lead to full conversion and the reaction occurs on slower time scales than in the ball mill, which is crucial for analysing mixtures taken from the milling jar by solid-state NMR. Our data suggest that on top of centrifugal forces, an efficient mixing of the starting materials is required for reaching a complete reaction.
Collapse
Affiliation(s)
- Ettore Bartalucci
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| | - Christian Schumacher
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Leeroy Hendrickx
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Francesco Puccetti
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | | | - Rıza Dervişoğlu
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| | - Rakesh Puttreddy
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany.,University of Jyvaskyla, Department of Chemistry P. O. Box. 35, Survontie 9B, 40014, Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Thomas Wiegand
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
4
|
Zhou M, Zhang Y, Shi G, He Y, Cui Z, Zhang X, Fu P, Liu M, Qiao X, Pang X. Mechanically Driven Atom Transfer Radical Polymerization by Piezoelectricity. ACS Macro Lett 2023; 12:26-32. [PMID: 36541821 DOI: 10.1021/acsmacrolett.2c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Targeting sustainable and eco-friendly polymer synthesis, we demonstrate here a synergistically catalyzed atom transfer radical polymerization (ATRP) induced and controlled by interplay between ball milling (BM) and piezoelectric nanoparticles (piezoNPs). BM-induced electron transfer can be achieved through piezoNPs deformation under impact force, serving as an external stimulus to mediate polymerization. The ppm level of copper loading is sufficient in fabrication of a polymer with well-defined molecular weight and low polydispersity. High-molecular-weight polymers ranging from 33 to 74 kDa were prepared successfully through DMSO-assisted grinding. Besides, its good performance on availability of water as liquid-assisted grinding additive, the recyclability of piezoNPs, and the formation of cross-linker-free composite resin make our ATRP approach a green and practical option alongside the existent heat-, electro-, and photo-induced methods.
Collapse
Affiliation(s)
- Mengjie Zhou
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yu Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ge Shi
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yanjie He
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhe Cui
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Fu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Minying Liu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.,College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan Engineering Technology Research Center for Fiber Preparation and Modification, Henan University of Engineering, Zhengzhou 451191, China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Mechanochemical Synthesis of Fluorinated Imines. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144557. [PMID: 35889430 PMCID: PMC9323187 DOI: 10.3390/molecules27144557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Abstract
A number of imines, including 12 new compounds, previously not reported in the literature, derived from variously fluorinated benzaldehydes and different anilines or chiral benzylamines were synthesized by a solvent-free mechanochemical method, which was based on the manual grinding of equimolar amounts of the substrates at the room temperature. In a very short reaction time of only 15 min, the method produced the expected products with good-to-excellent yields. The yields were comparable or significantly higher than those reported in the literature for the imines synthesized by other methods. Importantly, the conditions used for the reactions with aniline derivatives also resulted in the high yields of imines obtained from chiral benzylamines, and can be extended to the synthesis with other similar amines. Structures of all imines were confirmed by NMR spectroscopy: 1H, 13C and 19F. For four compounds, X-ray structures were also obtained. The synthetic approach presented in this paper contributes to the prevention of environmental pollution and can be easily extended for larger-scale syntheses. The mechanochemical solvent-free method provides a convenient strategy particularly useful for the preparation of fluorinated imines being versatile intermediates or starting material in the synthesis of drugs and other fine chemicals.
Collapse
|
6
|
Krusenbaum A, Grätz S, Tigineh GT, Borchardt L, Kim JG. The mechanochemical synthesis of polymers. Chem Soc Rev 2022; 51:2873-2905. [PMID: 35302564 PMCID: PMC8978534 DOI: 10.1039/d1cs01093j] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 02/06/2023]
Abstract
Mechanochemistry - the utilization of mechanical forces to induce chemical reactions - is a rarely considered tool for polymer synthesis. It offers numerous advantages such as reduced solvent consumption, accessibility of novel structures, and the avoidance of problems posed by low monomer solubility and fast precipitation. Consequently, the development of new high-performance materials based on mechanochemically synthesised polymers has drawn much interest, particularly from the perspective of green chemistry. This review covers the constructive mechanochemical synthesis of polymers, starting from early examples and progressing to the current state of the art while emphasising linear and porous polymers as well as post-polymerisation modifications.
Collapse
Affiliation(s)
- Annika Krusenbaum
- Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Sven Grätz
- Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Getinet Tamiru Tigineh
- Department of Chemistry, Bahir Dar University, Peda Street 07, PO Box 79, Bahir Dar, Amhara, Ethiopia
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeon-Ju, Jeollabuk-do, 54896, Republic of Korea.
| | - Lars Borchardt
- Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Jeung Gon Kim
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeon-Ju, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
7
|
Lee GS, Lee HW, Lee HS, Do T, Do JL, Lim J, Peterson GI, Friščić T, Kim JG. Mechanochemical ring-opening metathesis polymerization: development, scope, and mechano-exclusive polymer synthesis. Chem Sci 2022; 13:11496-11505. [PMID: 36320385 PMCID: PMC9557243 DOI: 10.1039/d2sc02536a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
Ruthenium-alkylidene initiated ring-opening metathesis polymerization has been realized under solid-state conditions by employing a mechanochemical ball milling method. This method promotes greenness and broadens the scope to include mechano-exclusive products. The carbene- and pyridine-based Grubbs 3rd-generation complex outperformed other catalysts and maintained similar mechanistic features of solution-phase reactions. High-speed ball milling provides sufficient mixing and energy to the solid reaction mixture, which is composed of an initiator and monomers, to minimize or eliminate the use of solvents. Therefore, the solubility and miscibility of monomers and Ru-initiators are not limiting factors in solid-state ball milling. A wide variety of solid monomers, including ionomers, fluorous monomers, and macromonomers, were successfully polymerized under ball milling conditions. Importantly, direct copolymerization of immiscible (ionic/hydrophobic) monomers exemplifies the synthesis of mechano-exclusive polymers that are difficult to make using traditional solution procedures. Finally, the addition of a small amount of a liquid additive (i.e., liquid-assisted grinding) minimized chain-degradation, enabling high-molecular-weight polymer synthesis. Mechanochemical ball-milling ring-opening metathesis polymerization minimized solvent use and produced previously inaccessible polymers in solution.![]()
Collapse
Affiliation(s)
- Gue Seon Lee
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyo Won Lee
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyun Sub Lee
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Taeyang Do
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jean-Louis Do
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, H3A0B8 Montreal, Canada
| | - Jeewoo Lim
- Department of Chemistry and Research Institute for Basic Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gregory I. Peterson
- Department of Chemistry, Inchon National University, Incheon, 22012, Republic of Korea
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, H3A0B8 Montreal, Canada
| | - Jeung Gon Kim
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Jeonbuk, 55324, Republic of Korea
| |
Collapse
|