1
|
Tahara A, Mori A, Hayashi JI, Kudo S. Effect of alkali metal cations on dehydrogenative coupling of formate anions to oxalate. Front Chem 2025; 13:1588773. [PMID: 40337327 PMCID: PMC12055785 DOI: 10.3389/fchem.2025.1588773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 03/25/2025] [Indexed: 05/09/2025] Open
Abstract
Introduction With the growing global concern over CO2 emissions, reducing CO2 output has become an urgent requirement. The iron production industry is among those with the highest CO2 emissions, primarily due to the use of coke as a reductant and the use of a heat source at approximately 2,000°C. To address this issue, various alternative reductants, including CO, H2, and lignite, have been explored. Building on these efforts, we recently reported a novel ironmaking system using oxalic acid (HOOC-COOH) as the reductant. Formate salts, hydrogenated forms of CO2, are promising precursors for oxalate salts; however, their behavior during dimerization remains poorly understood. Herein, we investigate the influence of group 1 and 2 metal cations on the base-promoted dehydrogenative coupling of formate to form oxalate. Methods First, dehydrogenative coupling of sodium formate was executed by using various types of groups 1 and 2 metal carbonates. Second, the base was replaced from metal carbonates to metal hydroxides to check the reactivity. Finally, a countercation of sodium formate was replaced to various types of groups 1 and 2 metals. To elucidate the reaction mechanism, DFT calculation was executed. Results and discussion Treatment of sodium formate with various bases (group 1 and 2 metal carbonates or hydroxides) revealed that group 1 metal hydroxides are more effective than metal carbonates for oxalate formation, with cesium hydroxide (CsOH) exhibiting high reactivity. Density functional theory (DFT) calculations suggest that this kinetic advantage arises not only from increased basicity but also from intermediate destabilization in the Na/Cs mixed-cation system. Additionally, both experimental and theoretical investigations reveal that oxalate yield is influenced by the thermodynamic stability of intermediates and products (oxalate salts), highlighting the crucial role of cations in the reaction.
Collapse
Affiliation(s)
- Atsushi Tahara
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Aska Mori
- Division of Advanced Device Materials, Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, Fukuoka, Japan
| | - Jun-ichiro Hayashi
- Division of Advanced Device Materials, Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, Fukuoka, Japan
| | - Shinji Kudo
- Division of Advanced Device Materials, Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Xu YZ, Abbott DF, Poon LN, Mougel V. Two-step tandem electrochemical conversion of oxalic acid and nitrate to glycine. EES CATALYSIS 2025:d5ey00016e. [PMID: 40207167 PMCID: PMC11973474 DOI: 10.1039/d5ey00016e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
This study presents a facile tandem strategy for improving the efficiency of glycine electrosynthesis from oxalic acid and nitrate. In this tandem electrocatalytic process, oxalic acid is first reduced to glyoxylic acid, while nitrate is reduced to hydroxylamine. Subsequent coupling of these two precursors results in the formation of a C-N bond, producing the intermediate glyoxylic acid oxime, which is further reduced in situ to glycine. Here we show, using only a simple Pb foil electrode, which maximizes the yield of the first step of the transformation (i.e. the reduction of oxalic acid to glyoxylic acid) prior to the coupling step allows for an unprecedented selectivity and conversion for glycine electrosynthesis to be achieved. Overall, a maximum glycine faradaic efficiency (FE) of 59% is achieved at -300 mA cm-2 and a high glycine partial current density of -232 mA cm-2 and a glycine production rate of 0.82 mmol h-1 cm-2 are attained at -400 mA cm-2, thereby paving the way for an energy and economically efficient electrochemical synthesis of glycine.
Collapse
Affiliation(s)
- Yuan-Zi Xu
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1-5 8093 Zürich Switzerland
| | - Daniel F Abbott
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1-5 8093 Zürich Switzerland
| | - Lok Nga Poon
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1-5 8093 Zürich Switzerland
| | - Victor Mougel
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1-5 8093 Zürich Switzerland
| |
Collapse
|
3
|
Zheng S, Sun S, Manker LP, Luterbacher JS. Aldehyde-Stabilization Strategies for Building Biobased Consumer Products around Intact lignocellulosic Structures. Acc Chem Res 2025; 58:877-892. [PMID: 40048243 DOI: 10.1021/acs.accounts.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Dwindling fossil resources and their associated environmental concerns have increased interest in biobased products. In particular, many approaches to convert lignocellulosic biomass into small-molecule building blocks are being explored via thermal, chemical, and biological processes. Depending on their structure, these molecules can be used as direct (i.e., drop-in) or indirect (different molecule from what is used today) substitutes for petrochemicals. In all such cases, biomass must be deconstructed, which involves the depolymerization of lignin and polysaccharides as well as their further transformation to produce these substitutes. Deconstruction often requires harsh conditions that cause degradation, and further upgrading implies multiple conversion steps, especially for drop-in molecules, all of which lead to low atom economy. Our group has developed an aldehyde-stabilization strategy that facilitates the depolymerization of lignocellulose to monomers in high yields by stabilizing intermediates under biomass deconstruction conditions. This strategy has now been adapted to prepare indirect substitutes for petrochemicals with very high atom economy including biobased solvents, plastic precursors, adhesives, and surfactants, which have widespread applications in modern society.In this Account, we first introduce the function of aldehydes using formaldehyde (FA) as an example. Specifically, we discuss their role in assisting lignin isolation and their ability to stabilize lignin by looking at the lignin monomer yields that can be obtained after hydrogenolysis of the associated aldehyde-functionalized lignin. Highly selective production of lignin monomers was achieved using acetaldehyde (AA) or propionaldehyde (PPA) as a stabilization reagent via either reductive or oxidative depolymerization. In a typical FA-assisted fractionation, hemicellulose was directly converted into diformylxylose (DFX), while cellulose with properties similar to those obtained by organosolv was isolated but could be converted to diformyl-glucose isomers (DFGs) by further hydrolysis. These stable molecules provide us a new method to preserve sugar molecules that often degrade during acidic fractionation, which will be discussed in Section 3. Besides, DFX can also be used as a green solvent (Section 4), while FA-lignin exhibits excellent adhesion properties for plywood preparation (Section 5). Biobased glyoxylic acid (GA) was used to convert hemicellulose into a high yield of dimethylglyoxylic-acid-xylose (DMGX), a terephthalic acid (TA) substitute for bioplastics production (Section 6), while GA-lignin demonstrates great amphiphilic properties and finds applications as surfactants in cosmetic products (Section 7). When fatty aldehydes were used as stabilization reagents, both lignin and hemicellulose were converted to surfactants by downstream defunctionalization (Section 7). We will also discuss the current limitations of this aldehyde-stabilization strategy for biomass utilization as well as potential solutions and improvements to said limitations. With this Account, we hope to spur further interest in aldehyde stabilization as a tool to deconstruct biomass and build new consumer products around functionalized and thus largely preserved natural structures.
Collapse
Affiliation(s)
- Shasha Zheng
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Songlan Sun
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Lorenz P Manker
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Jeremy S Luterbacher
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
4
|
Olvera-Vargas H, González F, Guillén-Garcés RA, Rincón ME. Reverse-engineered Electro-Fenton for the selective synthesis of oxalic or oxamic acid through the degradation of acetaminophen: A novel green electrocatalytic refinery approach. WATER RESEARCH 2025; 272:122914. [PMID: 39708384 DOI: 10.1016/j.watres.2024.122914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
The Electro-Fenton process (EF) has been conventionally applied to efficiently degrade refractory and/or toxic pollutants. However, in this work, EF was used as a reverse engineering tool to selectively synthesize highly value-added products (oxalic or oxamic acid) through the degradation of the model pollutant acetaminophen, a widely used analgesic and antipyretic drug. It was found that the production of either oxalic or oxamic acid is dictated by the applied current density. Hence, oxalic acid is favored at low current densities trough a mechanism dominated by homogeneous •OH radical oxidation, while oxamic acid is the majoritarian product at high current densities where electron transfer at the anode surface becomes an important mechanism in combination with •OH oxidation. Under optimal reaction conditions (0.71 mA cm-2 and 100 mg l-1 of initial total organic carbon (TOC) concentration), up to 227.1 ± 26.3 mg l-1 of oxalic acid were produced, with high yield and selectivity of 54.9 ± 5.1 % and 94.7 ± 9.9 %, respectively (the TOC removal was 42.0 ± 2.4 %). In the case of oxamic acid, the highest concentration of 33.8 ± 2.1 mg l-1 was produced at 2.13 mA cm-2 and an initial TOC concentration of 50 mg l-1, which represented a yield of 18.7 ± 0.3 % and 60.9 ± 9.3 % selectivity (71.1 ± 4.4 % of TOC removal). It is worth noting that at low current density when oxalic acid is favored, the selectivity for both products was 100 %, meaning that those were the only products remaining in the solution, with oxalic acid as the major product (94.7 ± 9.9 % with initial TOC of 100 mg l-1, and 98.7 ± 0.9 % with initial TOC of 50 mg l-1). This is a pioneer work on EF applications to the field of wastewater valorization/refining through the recovery of value-added products within a circular economy.
Collapse
Affiliation(s)
- Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM). Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos, 62580, Mexico.
| | - Fernández González
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM). Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos, 62580, Mexico; Universidad Politécnica del Estado de Morelos, Boulevard Cuauhnáhuac No 566, Col. Lomas del Texcal, Jiutepec, Morelos, CP 62550, Mexico
| | - Rosa Angélica Guillén-Garcés
- Universidad Politécnica del Estado de Morelos, Boulevard Cuauhnáhuac No 566, Col. Lomas del Texcal, Jiutepec, Morelos, CP 62550, Mexico
| | - Marina E Rincón
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM). Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos, 62580, Mexico
| |
Collapse
|
5
|
Goodwin RJ, Muang-Non P, Tzioumis NA, Jolliffe KA, White NG. Near-Quantitative Removal of Oxalate and Terephthalate from Water by Precipitation with a Rigid Bis-Amidinium Compound. Chemistry 2025; 31:e202404208. [PMID: 39670680 DOI: 10.1002/chem.202404208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Indexed: 12/14/2024]
Abstract
A simple, readily-prepared precipitant (1⋅Cl2) precipitates oxalate or terephthalate from water with very high efficacy, removing these anions at sub-millimolar concentrations using only one equivalent of precipitant. A simple aqueous base/acid cycle can be used to regenerate 1⋅Cl2 after use. The resulting precipitates, 1⋅oxalate and 1⋅terephthalate, are anhydrous and closely-packed, with each anion receiving eight charge-assisted hydrogen bonds from amidinium N-H donors. Precipitation of oxalate and terephthalate occurs at much lower concentrations than other dicarboxylates, and direct competition experiments with the biologically/environmentally relevant divalent anions CO3 2-, HPO4 2- and SO4 2- reveal very high selectivity for oxalate or terephthalate over these competitors.
Collapse
Affiliation(s)
- Rosemary J Goodwin
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Phonlakrit Muang-Non
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Nikki A Tzioumis
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Katrina A Jolliffe
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Nicholas G White
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
6
|
Scarpa de Souza EL, Neumann H, Roque Duarte Correia C, Beller M. Proposing Oxalic Acid as Chemical Storage of Carbon Dioxide to Achieve Carbon Neutrality. CHEMSUSCHEM 2025; 18:e202401199. [PMID: 39630013 PMCID: PMC11789976 DOI: 10.1002/cssc.202401199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/29/2024] [Indexed: 02/04/2025]
Abstract
Increasing emissions of carbon dioxide into the atmosphere due to the use of fossil fuels and ongoing deforestation are affecting the global climate. To reach the Paris climate agreement, in the coming decades low emission technologies must be developed, which allow for carbon removal on a Gt per year-scale. In this regard, we propose the electrochemical conversion of carbon dioxide to oxalic acid as a potentially viable pathway for large scale CO2 utilization and storage. Combined with water oxidation, in principle this transformation does not need stoichiometric amounts of co-reagents and minimize the necessary electrons for the reduction of carbon dioxide.
Collapse
Affiliation(s)
| | - Helfried Neumann
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Str. 29a18059RostockGermany
| | - Carlos Roque Duarte Correia
- Department of Organic ChemistryInstitute of ChemistryUniversity of Campinas, Josué de CastroCampinas, São Paulo10384-612Brazil
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Str. 29a18059RostockGermany
| |
Collapse
|
7
|
Rivera RM, Binnemans K. Carbon Dioxide as a Sustainable Reagent in Circular Hydrometallurgy. CHEMSUSCHEM 2025; 18:e202400931. [PMID: 39312754 PMCID: PMC11789993 DOI: 10.1002/cssc.202400931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
This review highlights the use of CO2 as a reagent in hydrometallurgy, with emphasis on the new concept of circular hydrometallurgy. It is shown how waste CO2 can be utilised in hydrometallurgical operations for pH control or regeneration of acids for leaching. Metal-rich raffinate solutions generated after removal of the valuable metals can serve as feedstocks for mineral carbonation, providing alternative avenues for CO2 sequestration. Furthermore, CO2 can also be used as a renewable feedstock for the production of chemical reagents that can find applications in hydrometallurgy as lixiviant, as precipitation reagent or for pH control. Mineral carbonation can be combined with chemical reactions involving metal complexation reagents, as well as with solvent extraction processes for the concurrent precipitation of metal carbonates and acid regeneration. An outlook for future research in the area is also presented.
Collapse
Affiliation(s)
| | - Koen Binnemans
- Department of ChemistryKU LeuvenCelestijnenlaan 200FB-3001HeverleeBelgium
| |
Collapse
|
8
|
Yoon H, Park K, Jung KD, Yoon S. Simultaneous utilization of CO 2 and potassium-rich biomass for the environmentally friendly production of potassium formate. RSC Adv 2025; 15:348-356. [PMID: 39758892 PMCID: PMC11696524 DOI: 10.1039/d4ra07360f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025] Open
Abstract
The C1 chemical species, potassium formate (K(HCO2)), known as a two-electron reducing agent, finds application in the synthesis of multi-carbon compounds, including oxalate, and plays a crucial role not only in the food and pharmaceutical industries but also across various sectors. However, the direct hydrogenation of CO2 to produce K(HCO2) remains a challenge. Addressing this issue, efficient production of K(HCO2) is achieved by integrating CO2 hydrogenation in a trickle-bed reactor using a heterogeneous catalyst with a novel separation method that utilizes potassium ions from biomass ash for formic acid derivative product isolation. Through alkaline-mediated CO2 hydrogenation using N-methylpyrrolidine (NMPI), a concentrated 5 M NMPI solution of formic acid N-methylpyrrolidine complex ([NMPIH][HCO2]) was formed, facilitating the synthesis of K(HCO2) with over 99% purity via reaction with excess K ions contained within Bamboo ash. Notably, 80% of CO2 was converted to formate ions, and NMPI was expected to be effectively recycled as it was completely removed during the evaporation process for K(HCO2) separation. Additionally, this process yielded SiO2 by-product particles with sizes ranging from 10 to 20 nm. This research highlights a novel strategy contributing to sustainable environmental management and resource recycling by effectively utilizing CO2 as a valuable feedstock while concurrently producing valuable chemical compounds from waste materials.
Collapse
Affiliation(s)
- Hayoung Yoon
- Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul Republic of Korea
| | - Kwangho Park
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST) 5 Hwarang-ro 14-gil, Seongbuk-gu Seoul 02792 Republic of Korea
| | - Kwang-Deog Jung
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST) 5 Hwarang-ro 14-gil, Seongbuk-gu Seoul 02792 Republic of Korea
| | - Sungho Yoon
- Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul Republic of Korea
| |
Collapse
|
9
|
Wang L, Tu Z, Liang J, Wang Y, Wei Z. Development of poly(butylene oxalate-co-furanoate) copolymers with enhanced sustainability and hydrolytic degradability. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135997. [PMID: 39366038 DOI: 10.1016/j.jhazmat.2024.135997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
Polyoxalate, a novel intrinsically hydrolysable polyester, garners significant interest for its high cost-effectiveness and versatility. However, concerns persist regarding its durability in practical applications. This study integrates bio-based poly(butylene furanoate) (PBF), which possesses remarkable barrier performance, into the poly(butylene oxalate) (PBOx) framework to synthesize poly(butylene oxalate‑co‑furanoate) (PBOF) with tunable degradation rates. The influence of incorporating BF units on thermal, crystalline, mechanical, and barrier properties was systematically analyzed. Results demonstrated the addition of BF units dramatically improved the balance between degradation and physical properties. Laboratory degradation experiments indicated that PBOF possessed significant degradation effects. Among them, PBOF-41 (with 41 % molar furanoate) decreased in weight by 20 % in freshwater, 70 % in an enzyme solution, and 8 % in artificial seawater within 30 days. After 28 days of degradation in soil, the residual weight was reduced to 80 % of its initial weight. Theoretical calculations and experiments have clarified the enhancement of the Gibbs free energy and energy barrier of the hydrolysis reaction by the BF unit. In summary, PBOF copolyesters have excellent gas barrier performance, adjustable thermal properties, well-balanced mechanical properties, and degradability, making them highly promising for sustainable plastic products.
Collapse
Affiliation(s)
- Lizheng Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhu Tu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; Sinopec Dalian Petrochemical Research Institute Co. Ltd., Dalian 113001, China
| | - Jiaming Liang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yanyu Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
10
|
Klose I, Patel C, Mondal A, Schwarz A, Pupo G, Gouverneur V. Fluorspar to fluorochemicals upon low-temperature activation in water. Nature 2024; 635:359-364. [PMID: 39537885 PMCID: PMC11560839 DOI: 10.1038/s41586-024-08125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
The dangerous chemical hydrogen fluoride sits at the apex of the fluorochemical industry, but the substantial hazards linked to its production under harsh conditions (above 300 degrees Celsius) and transport are typically contracted to specialists. All fluorochemicals for applications, including refrigeration, electric transportation, agrochemicals and pharmaceuticals, are prepared from fluorspar (CaF2) through a procedure that generates highly dangerous hydrogen fluoride1-5. Here we report a mild method to obtain fluorochemicals directly from fluorspar, bypassing the necessity to manufacture hydrogen fluoride. Acid-grade fluorspar (more than 97 per cent CaF2) is treated with the fluorophilic Lewis acid boric acid (B(OH)3) or silicon dioxide (SiO2), in the presence of oxalic acid, a Brønsted acid that is highly effective for Ca2+ sequestration. This scalable process carried out in water at low temperature (below 50 degrees Celsius) enables access to widely used fluorochemicals, including tetrafluoroboric acid, alkali metal fluorides, tetraalkylammonium fluorides and fluoro(hetero)arenes. The replacement of oxalic acid with sulfuric acid gave comparable results for B(OH)3, but was not as effective when the fluorophilic Lewis acid was SiO2. A similar process also works with the lower-purity metspar. The production of fluorochemicals directly from fluorspar offers the possibility of decentralized manufacturing-an attractive model for the fluorochemical industry. With the renewed interest in innovative methods to synthesize oxalic acid via carbon dioxide capture and biomass6,7, and the challenges posed by our dependence on fossil fuels for sulfur and therefore sulfuric acid supply8,9, our technology may represent a departure towards a sustainable fluorochemical industry.
Collapse
Affiliation(s)
- Immo Klose
- University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Calum Patel
- University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Anirban Mondal
- University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | | | | | | |
Collapse
|
11
|
Liu M, Wang J, Umeda I, Wang Z, Kumar S, Zheng Y. Harnessing filamentous fungi and fungal-bacterial co-culture for biological treatment and valorization of hydrothermal liquefaction aqueous phase from corn stover. BIORESOURCE TECHNOLOGY 2024; 409:131240. [PMID: 39122129 DOI: 10.1016/j.biortech.2024.131240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/14/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
To promote the sustainability of hydrothermal liquefaction (HTL) for biofuel production, fungal fermentation was investigated to treat HTL aqueous phase (HTLAP) from corn stover. The most promising fungus, Aspergillus niger demonstrated superior tolerance to HTLAP and capability to produce oxalic acid as a value-added product. The fungal-bacterial co-culture of A. niger and Rhodococcus jostii was beneficial at low COD (chemical oxygen demand) loading of 3800 mg/L in HTLAP, achieving 69% COD removal while producing 0.5 g/L oxalic acid and 11% lipid content in microbial biomass. However, higher COD loading of 4500, 6040, and 7800 mg/L significantly inhibited R. jostii, but promoted A. niger growth with increased oxalic acid production while COD removal remained similar (58-65%). Additionally, most total organic carbon (TOC) in HTLAP was transformed into oxalic acid, representing 46-56% of the consumed TOC. These findings highlighted the potential of fungi for bio-upcycling of HTLAP into value-added products.
Collapse
Affiliation(s)
- Meicen Liu
- Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS 66506, USA
| | - Jiefu Wang
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington St. SW, Blacksburg, VA 24060, USA
| | - Isamu Umeda
- Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA 23529, USA
| | - Zhiwu Wang
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington St. SW, Blacksburg, VA 24060, USA
| | - Sandeep Kumar
- Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA 23529, USA
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS 66506, USA.
| |
Collapse
|
12
|
Amenaghawon AN, Ayere JE, Amune UO, Otuya IC, Abuga EC, Anyalewechi CL, Okoro OV, Okolie JA, Oyefolu PK, Eshiemogie SO, Osahon BE, Omede M, Eshiemogie SA, Igemhokhai S, Okedi MO, Kusuma HS, Muojama OE, Shavandi A, Darmokoesoemo H. A comprehensive review of recent advances in the applications and biosynthesis of oxalic acid from bio-derived substrates. ENVIRONMENTAL RESEARCH 2024; 251:118703. [PMID: 38518912 DOI: 10.1016/j.envres.2024.118703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Organic acids are important compounds with numerous applications in different industries. This work presents a comprehensive review of the biological synthesis of oxalic acid, an important organic acid with many industrial applications. Due to its important applications in pharmaceuticals, textiles, metal recovery, and chemical and metallurgical industries, the global demand for oxalic acid has increased. As a result, there is an increasing need to develop more environmentally friendly and economically attractive alternatives to chemical synthesis methods, which has led to an increased focus on microbial fermentation processes. This review discusses the specific strategies for microbial production of oxalic acid, focusing on the benefits of using bio-derived substrates to improve the economics of the process and promote a circular economy in comparison with chemical synthesis. This review provides a comprehensive analysis of the various fermentation methods, fermenting microorganisms, and the biochemistry of oxalic acid production. It also highlights key sustainability challenges and considerations related to oxalic acid biosynthesis, providing important direction for further research. By providing and critically analyzing the most recent information in the literature, this review serves as a comprehensive resource for understanding the biosynthesis of oxalic acid, addressing critical research gaps, and future advances in the field.
Collapse
Affiliation(s)
- Andrew Nosakhare Amenaghawon
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria.
| | - Joshua Efosa Ayere
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Ubani Oluwaseun Amune
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical Engineering, Faculty of Engineering, Edo State University, Uzairue, Edo State, Nigeria
| | - Ifechukwude Christopher Otuya
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical Engineering, Faculty of Engineering, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Emmanuel Christopher Abuga
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Chinedu Lewis Anyalewechi
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical Engineering, Faculty of Engineering, Federal Polytechnic Oko, Anambra State, Nigeria
| | - Oseweuba Valentine Okoro
- BioMatter Unit - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Jude A Okolie
- Engineering Pathways, Gallogly College of Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Peter Kayode Oyefolu
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Steve Oshiokhai Eshiemogie
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Blessing Esohe Osahon
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Melissa Omede
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Stanley Aimhanesi Eshiemogie
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Shedrach Igemhokhai
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Petroleum Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Maxwell Ogaga Okedi
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University, Tallahassee, FL 2310-6046, USA
| | - Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia.
| | - Obiora Ebuka Muojama
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, 35487-0203, USA
| | - Amin Shavandi
- BioMatter Unit - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia.
| |
Collapse
|
13
|
Wang L, Tu Z, Liang J, Wei Z. Poly(butylene oxalate-co-terephthalate): A PBAT-like but rapid hydrolytic degradation plastic. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134349. [PMID: 38653140 DOI: 10.1016/j.jhazmat.2024.134349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Concerns over worldwide plastic pollution have led to the development of biodegradable polyester materials with excellent physical and chemical properties through the copolymerization of poly(butylene oxalate) (PBOx). As a result, poly(butylene oxalate-co-terephthalate)s (PBOTs) with varying compositions, were prepared by incorporating aromatic units. Studies have indicated that PBOT-47 (with a 47% molar terephthalate), exhibits exceptional mechanical properties. With an elongation at break of 1160% and a tensile strength that remains above 30 MPa, similar to or even better than those of the commercial biodegradable plastic poly(butylene adipate-co-terephthalate) PBAT-47 (47% molar terephthalate). Moreover, the permeability coefficients of PBAT-47 for H2O, CO2 and O2 were 5.8, 50.6 and 5.6 times higher than that of PBOT-47, revealing the superior barrier properties of PBOT. Through experimental research and theoretical simulation, the mechanism of the copolymer hydrolysis was elucidated. The readily hydrolytic nature of the oxalate unit endows it with the capacity for rapid degradation, possessing the potential to be a short-term degradable material with physical properties similar to PBAT.
Collapse
Affiliation(s)
- Lizheng Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhu Tu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiaming Liang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
14
|
Wang H, Li H, Lee CK, Mat Nanyan NS, Tay GS. A systematic review on utilization of biodiesel-derived crude glycerol in sustainable polymers preparation. Int J Biol Macromol 2024; 261:129536. [PMID: 38278390 DOI: 10.1016/j.ijbiomac.2024.129536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
With the rapid development of biodiesel, biodiesel-derived glycerol has become a promising renewable bioresource. The key to utilizing this bioresource lies in the value-added conversion of crude glycerol. While purifying crude glycerol into a pure form allows for diverse applications, the intricate nature of this process renders it costly and environmentally stressful. Consequently, technology facilitating the direct utilization of unpurified crude glycerol holds significant importance. It has been reported that crude glycerol can be bio-transformed or chemically converted into high-value polymers. These technologies provide cost-effective alternatives for polymer production while contributing to a more sustainable biodiesel industry. This review article describes the global production and quality characteristics of biodiesel-derived glycerol and investigates the influencing factors and treatment of the composition of crude glycerol including water, methanol, soap, matter organic non-glycerol, and ash. Additionally, this review also focused on the advantages and challenges of various technologies for converting crude glycerol into polymers, considering factors such as the compatibility of crude glycerol and the control of unfavorable factors. Lastly, the application prospect and value of crude glycerol conversion were discussed from the aspects of economy and environmental protection. The development of new technologies for the increased use of crude glycerol as a renewable feedstock for polymer production will be facilitated by the findings of this review, while promoting mass market applications.
Collapse
Affiliation(s)
- Hong Wang
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
| | - Hongpeng Li
- Tangshan Jinlihai Biodiesel Co. Ltd., 063000 Tangshan, China
| | - Chee Keong Lee
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia; School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
| | - Noreen Suliani Mat Nanyan
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia; School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
| | - Guan Seng Tay
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia.
| |
Collapse
|
15
|
Wang Y, van der Maas K, Weinland DH, Trijnes D, van Putten RJ, Tietema A, Parsons JR, de Rijke E, Gruter GJM. Relationship between Composition and Environmental Degradation of Poly(isosorbide- co-diol oxalate) (PISOX) Copolyesters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2293-2302. [PMID: 38277479 PMCID: PMC10851428 DOI: 10.1021/acs.est.2c09699] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/28/2024]
Abstract
To reduce the global CO2 footprint of plastics, bio- and CO2-based feedstock are considered the most important design features for plastics. Oxalic acid from CO2 and isosorbide from biomass are interesting rigid building blocks for high Tg polyesters. The biodegradability of a family of novel fully renewable (bio- and CO2-based) poly(isosorbide-co-diol) oxalate (PISOX-diol) copolyesters was studied. We systematically investigated the effects of the composition on biodegradation at ambient temperature in soil for PISOX (co)polyesters. Results show that the lag phase of PISOX (co)polyester biodegradation varies from 0 to 7 weeks. All (co)polyesters undergo over 80% mineralization within 180 days (faster than the cellulose reference) except one composition with the cyclic codiol 1,4-cyclohexanedimethanol (CHDM). Their relatively fast degradability is independent of the type of noncyclic codiol and results from facile nonenzymatic hydrolysis of oxalate ester bonds (especially oxalate isosorbide bonds), which mostly hydrolyzed completely within 180 days. On the other hand, partially replacing oxalate with terephthalate units enhances the polymer's resistance to hydrolysis and its biodegradability in soil. Our study demonstrates the potential for tuning PISOX copolyester structures to design biodegradable plastics with improved thermal, mechanical, and barrier properties.
Collapse
Affiliation(s)
- Yue Wang
- van‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Institute
for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Kevin van der Maas
- van‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Daniel H. Weinland
- van‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Dio Trijnes
- van‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | | | - Albert Tietema
- Institute
for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - John R. Parsons
- Institute
for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Eva de Rijke
- Institute
for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Gert-Jan M. Gruter
- van‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Avantium
Support BV, Zekeringstraat
29, Amsterdam 1014 BV, The Netherlands
| |
Collapse
|
16
|
Zhang T, Knezevic J, Zhu M, Hong J, Zhou R, Song Q, Ding L, Sun J, Liu D, Ostrikov KK, Zhou R, Cullen PJ. Catalyst-Free Carbon Dioxide Conversion in Water Facilitated by Pulse Discharges. J Am Chem Soc 2023; 145:28233-28239. [PMID: 38103175 DOI: 10.1021/jacs.3c11102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
By inducing CO2-pulsed discharges within microchannel bubbles and regulating thus-forming plasma microbubbles, we observe high-performance, catalyst-free coformation of hydrogen peroxide (H2O2) and oxalate directly from CO2 and water. With isotope-labeled C18O2 as the feedstock, peaks of H218O16O and H216O2 observed by ex situ surface-enhanced Raman spectra indicate that single-atom oxygen (O) from CO2 dissociations and H2O-derived OH radicals both contribute to H2O2 formation. The global plasma chemistry modeling suggests that high-density, energy-intense electron supply enables high-density CO2- (aq) and HCO2- (aq) formation and their subsequent coupling to produce oxalate. The enhanced solvation of CO2, facilitated by the efficient transport of CxOy ionic species and CO, is demonstrated as a crucial benefit of spark discharges interacting with water at the bubble interface. We expect this plasma microbubble approach to provide a novel power-to-chemical avenue to convert CO2 into valuable H2O2 and oxalic acid platform chemicals, thus leveraging renewable energy resources.
Collapse
Affiliation(s)
- Tianqi Zhang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Josip Knezevic
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Mengying Zhu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Jungmi Hong
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rusen Zhou
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Qiang Song
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Luyao Ding
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jing Sun
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Renwu Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
17
|
Gul M, Yuksel B, Bulut H, DeMirci H. Structural analysis of wild-type and Val120Thr mutant Candida boidinii formate dehydrogenase by X-ray crystallography. Acta Crystallogr D Struct Biol 2023; 79:1010-1017. [PMID: 37860962 PMCID: PMC10619422 DOI: 10.1107/s2059798323008070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023] Open
Abstract
Candida boidinii NAD+-dependent formate dehydrogenase (CbFDH) has gained significant attention for its potential application in the production of biofuels and various industrial chemicals from inorganic carbon dioxide. The present study reports the atomic X-ray crystal structures of wild-type CbFDH at cryogenic and ambient temperatures, as well as that of the Val120Thr mutant at cryogenic temperature, determined at the Turkish Light Source `Turkish DeLight'. The structures reveal new hydrogen bonds between Thr120 and water molecules in the active site of the mutant CbFDH, suggesting increased stability of the active site and more efficient electron transfer during the reaction. Further experimental data is needed to test these hypotheses. Collectively, these findings provide invaluable insights into future protein-engineering efforts that could potentially enhance the efficiency and effectiveness of CbFDH.
Collapse
Affiliation(s)
- Mehmet Gul
- Department of Molecular Biology and Genetics, Koc University, 34450 Istanbul, Türkiye
| | - Busra Yuksel
- Department of Molecular Biology and Genetics, Koc University, 34450 Istanbul, Türkiye
- Max Planck Institute for Biophysics, 60438 Frankfurt am Main, Germany
| | - Huri Bulut
- Department of Medical Biochemistry, Faculty of Medicine, Istinye University, 34010 Istanbul, Türkiye
| | - Hasan DeMirci
- Department of Molecular Biology and Genetics, Koc University, 34450 Istanbul, Türkiye
- Koc University Isbank Center for Infectious Diseases (KUISCID), Koc University, 34010 Istanbul, Türkiye
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
18
|
Yong KJ, Wu TY. Recent advances in the application of alcohols in extracting lignin with preserved β-O-4 content from lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2023; 384:129238. [PMID: 37245662 DOI: 10.1016/j.biortech.2023.129238] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Utilizing lignocellulosic biomass wastes to produce bioproducts is essential to address the reliance on depleting fossil fuels. However, lignin is often treated as a low-value-added component in lignocellulosic wastes. Valorization of lignin into value-added products is crucial to improve the economic competitiveness of lignocellulosic biorefinery. Monomers obtained from lignin depolymerization could be upgraded into fuel-related products. However, lignins obtained from conventional methods are low in β-O-4 content and, therefore, unsuitable for monomer production. Recent literature has demonstrated that lignins extracted with alcohol-based solvents exhibit preserved structures with high β-O-4 content. This review discusses the recent advances in utilizing alcohols to extract β-O-4-rich lignin, where discussion based on different alcohol groups is considered. Emerging strategies in employing alcohols for β-O-4-rich lignin extraction, including alcohol-based deep eutectic solvent, flow-through fractionation, and microwave-assisted fractionation, are reviewed. Finally, strategies for recycling or utilizing the spent alcohol solvents are also discussed.
Collapse
Affiliation(s)
- Khai Jie Yong
- Department of Chemical Engineering, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Ta Yeong Wu
- Department of Chemical Engineering, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
19
|
Xu Y, Li S, Fang H. Direct synthesis of oxalic acid via oxidative CO coupling mediated by a dinuclear hydroxycarbonylcobalt(III) complex. Nat Commun 2023; 14:2739. [PMID: 37173323 PMCID: PMC10182058 DOI: 10.1038/s41467-023-38442-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Oxidative coupling of CO is a straightforward and economic benign synthetic route for value-added α-diketone moiety containing C2 or higher carbon compounds in both laboratory and industry, but is still undeveloped to date. In this work, a rare coplanar dinuclear hydroxycarbonylcobalt(III) complex, bearing a Schiff-base macrocyclic equatorial ligand and a μ-κ1(O):κ1(O')-acetate bridging axial ligand, is synthesized and characterized. The Co(III)-COOH bonds in this complex can be feasibly photocleaved, leading to the formation of oxalic acid. Moreover, the light-promoted catalytic direct production of oxalic acid from CO and H2O using O2 as the oxidant with good selectivity (> 95%) and atom economy at ambient temperature and gas pressure based on this dicobalt(III) complex have been achieved, with a turnover number of 38.5. The 13C-labelling and 18O-labelling experiments confirm that CO and H2O act as the sources of the -COOH groups in the dinuclear hydroxycarbonylcobalt(III) complex and the oxalic acid product.
Collapse
Affiliation(s)
- Yingzhuang Xu
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, China
| | - Songyi Li
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, China
| | - Huayi Fang
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
20
|
Chen K, Edgar AS, Li ZH, Marina OC, Yang D. Roles of HNO x and Carboxylic Acids in the Thermal Stability of Nitroplasticizer. ACS OMEGA 2023; 8:14730-14741. [PMID: 37125136 PMCID: PMC10134467 DOI: 10.1021/acsomega.3c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
In the thermal aging of nitroplasticizer (NP), the produced nitrous acid (HONO) can decompose into reactive nitro-oxide species and nitric acid (HNO3). These volatile species are prone to cause cascaded deterioration of NP and give rise to various acidic constituents. To gain insight on the early stage of NP degradation, an adequate method for measuring changes in the concentrations of HONO, HNO3, and related acidic species is imperative. The typical assessment of acidity in nonaqueous solutions (i.e., acid number) cannot differentiate acidic species and thus presents difficulty in the measurement of HONO and HNO3 at a micromolar concentration level. Using liquid-liquid extraction and ion chromatography (IC), we developed a fast and unambiguous analytical method to accurately determine the concentration of HONO, HNO3, acetic/formic acids, and oxalic acid in aged NP samples. Given by the overlay analysis results of liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and IC, the prominent increase of produced HONO after the depletion of antioxidants is the primary cause of HNO3 formation in the late stage of NP degradation, which results in the acid-catalyzed hydrolysis of NP into 2,2-dinitropropanol and acetic/formic acids. Our study has demonstrated that the aging temperature plays a crucial role in accelerating the formation and decomposition of HONO, which consequently increases the acidity of aged NP samples and hence accelerates the hydrolyzation of NP. Therefore, to prevent NP from undergoing rapid degradation, we suggest that the concentration of HNO3 should be maintained below 1.35 mM and the temperature under 38 °C.
Collapse
Affiliation(s)
- Kitmin Chen
- MST-7:
Engineered Materials Group, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Alexander S. Edgar
- MST-7:
Engineered Materials Group, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Zheng-Hua Li
- EES-14:
Earth System Observations Group, Earth and Environmental Sciences
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Oana C. Marina
- EES-14:
Earth System Observations Group, Earth and Environmental Sciences
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dali Yang
- MST-7:
Engineered Materials Group, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
21
|
de Campos BA, da Silva NCB, Moda LS, Vidinha P, Maia-Obi LP. pH-Sensitive Degradable Oxalic Acid Crosslinked Hyperbranched Polyglycerol Hydrogel for Controlled Drug Release. Polymers (Basel) 2023; 15:polym15071795. [PMID: 37050409 PMCID: PMC10099053 DOI: 10.3390/polym15071795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
pH-sensitive degradable hydrogels are smart materials that can cleave covalent bonds upon pH variation, leading to their degradation. Their development led to many applications for drug delivery, where drugs can be released in a pH-dependent manner. Crosslinking hyperbranched polyglycerol (HPG), a biocompatible building block bearing high end-group functionality, using oxalic acid (OA), a diacid that can be synthesized from CO2 and form highly activated ester bonds, can generate this type of smart hydrogel. Aiming to understand the process of developing this novel material and its drug release for oral administration, its formation was studied by varying reactant stoichiometry, concentration and cure procedure and temperature; it was characterized regarding gel percent (%gel), swelling degree (%S), FTIR and thermal behavior; impregnated using ibuprofen, as a model drug, and a release study was carried out at pH 2 and 7. Hydrogel formation was evidenced by its insolubility, FTIR spectra and an increase in Td and Tg; a pre-cure step was shown to be crucial for its formation and an increase in the concentration of the reactants led to higher %gel and lower %S. The impregnation resulted in a matrix-encapsulated system; and the ibuprofen release was negligible at pH 2 but completed at pH 7 due to the hydrolysis of the matrix. A pH-sensitive degradable HPG-OA hydrogel was obtained and it can largely be beneficial in controlled drug release applications.
Collapse
Affiliation(s)
- Bianca Andrade de Campos
- Center of Engineering, Modelling and Applied Social Sciences, Federal University of ABC, Avenida dos Estados, 5001, Santo André 09210-580, SP, Brazil
| | - Natalia Cristina Borges da Silva
- Center of Engineering, Modelling and Applied Social Sciences, Federal University of ABC, Avenida dos Estados, 5001, Santo André 09210-580, SP, Brazil
| | - Lucas Szmgel Moda
- Center of Engineering, Modelling and Applied Social Sciences, Federal University of ABC, Avenida dos Estados, 5001, Santo André 09210-580, SP, Brazil
| | - Pedro Vidinha
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, SP, Brazil
| | - Lígia Passos Maia-Obi
- Center of Engineering, Modelling and Applied Social Sciences, Federal University of ABC, Avenida dos Estados, 5001, Santo André 09210-580, SP, Brazil
| |
Collapse
|
22
|
Xu W, Cheng Y, Hou J, Kang P. Selective Electroreduction of Oxalic Acid to Glycolic Acid by Mesoporous TiO
2
Spheres. ChemCatChem 2023. [DOI: 10.1002/cctc.202201687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Wenjing Xu
- School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Yingying Cheng
- School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Jing Hou
- School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Peng Kang
- School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| |
Collapse
|
23
|
Hao L, Ren Q, Yang J, Luo L, Ren Y, Guo X, Zhou H, Xu M, Kong X, Li Z, Shao M. Promoting Electrocatalytic Hydrogenation of Oxalic Acid to Glycolic Acid via an Al 3+ Ion Adsorption Strategy Coupled with Ethylene Glycol Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13176-13185. [PMID: 36868558 DOI: 10.1021/acsami.3c00292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electrocatalytic hydrogenation (ECH) of oxalic acid (OX) to produce glycolic acid (GA), an important building block of biodegradable polymers as well as application in various branches of chemistry, has attracted extensive attention in the industry, while it still encounters challenges of low reaction rate and selectivity. Herein, we reported a cation adsorption strategy to realize the efficient ECH of OX to GA by adsorbing Al3+ ions on an anatase titanium dioxide (TiO2) nanosheet array, achieving 2-fold enhanced GA productivity (1.3 vs 0.65 mmol cm-2 h-1) with higher Faradaic efficiency (FE) (85 vs 69%) at -0.74 V vs RHE. We reveal that the Al3+ adatoms on TiO2 both act as electrophilic adsorption sites to enhance the carbonyl (C═O) adsorption of OX and glyoxylic acid (intermediate) and also promote the generation of reactive hydrogen (H*) on TiO2, thus promoting the reaction rate. This strategy is demonstrated effective for different carboxylic acids. Furthermore, we realized the coproduction of GA at the bipolar of a H-type cell by pairing ECH of OX (at cathode) and electrooxidation of ethylene glycol (at anode), demonstrating an economical manner with maximum electron economy.
Collapse
Affiliation(s)
- Leilei Hao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qinghui Ren
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiangrong Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lan Luo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Ren
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinyue Guo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hua Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, China
| | - Mingfei Shao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, China
| |
Collapse
|
24
|
Centi G, Perathoner S, Genovese C, Arrigo R. Advanced (photo)electrocatalytic approaches to substitute the use of fossil fuels in chemical production. Chem Commun (Camb) 2023; 59:3005-3023. [PMID: 36794323 PMCID: PMC9997108 DOI: 10.1039/d2cc05132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
Electrification of the chemical industry for carbon-neutral production requires innovative (photo)electrocatalysis. This study highlights the contribution and discusses recent research projects in this area, which are relevant case examples to explore new directions but characterised by a little background research effort. It is organised into two main sections, where selected examples of innovative directions for electrocatalysis and photoelectrocatalysis are presented. The areas discussed include (i) new approaches to green energy or H2 vectors, (ii) the production of fertilisers directly from the air, (iii) the decoupling of the anodic and cathodic reactions in electrocatalytic or photoelectrocatalytic devices, (iv) the possibilities given by tandem/paired reactions in electrocatalytic devices, including the possibility to form the same product on both cathodic and anodic sides to "double" the efficiency, and (v) exploiting electrocatalytic cells to produce green H2 from biomass. The examples offer hits to expand current areas in electrocatalysis to accelerate the transformation to fossil-free chemical production.
Collapse
Affiliation(s)
- Gabriele Centi
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Siglinda Perathoner
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Chiara Genovese
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Rosa Arrigo
- University of Salford, 336 Peel building, M5 4WT Manchester, UK
| |
Collapse
|
25
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
26
|
Kumar S, Panwar P, Sehrawat N, Upadhyay SK, Sharma AK, Singh M, Yadav M. Oxalic acid: recent developments for cost-effective microbial production. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Abstract
Organic acids are the important compounds that have found numerous applications in various industries. Oxalic acid is one of the important organic acids with different industrial applications. Different microbes have been reported as important sources of various organic acids. Majority of studies have been carried on fungal sources for oxalic acid production. Aspergillus sp. has been found efficient oxalic acid producer. Microbial productions of metabolites including organic acids are considered cost effective and eco-friendly approach over chemical synthesis. Fermentative production of microbial oxalic acid seems to be a good alternative as compared to chemical methods. Microbial production of oxalic acid still requires the extensive and elaborated research for its commercial production from efficient microbes using cost effective substrates. The present text summarizes the production of oxalic acid, its applications and recent developments in the direction of fermentative production of microbial oxalic acid.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Bioinformatics , Janta Vedic College , Baraut-Baghpat , Uttar Pradesh 250611 , India
| | - Priya Panwar
- Department of Biotechnology , M.M.E.C., Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala 133207 , India
| | - Nirmala Sehrawat
- Department of Biotechnology , M.M.E.C., Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala 133207 , India
| | - Sushil Kumar Upadhyay
- Department of Biotechnology , M.M.E.C., Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala 133207 , India
| | - Anil Kumar Sharma
- Department of Biotechnology , M.M.E.C., Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala 133207 , India
| | - Manoj Singh
- Department of Biotechnology , M.M.E.C., Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala 133207 , India
| | - Mukesh Yadav
- Department of Biotechnology , M.M.E.C., Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala 133207 , India
| |
Collapse
|
27
|
Wu Z, Wu M, Zhu K, Wu J, Lu Y. Photocatalytic coupling of electron-deficient alkenes using oxalic acid as a traceless linchpin. Chem 2023. [DOI: 10.1016/j.chempr.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Sustainable organic synthesis promoted on titanium dioxide using coordinated water and renewable energies/resources. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Centi G, Perathoner S. Catalysis for an Electrified Chemical Production. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
30
|
Boor V, Frijns JEBM, Perez-Gallent E, Giling E, Laitinen AT, Goetheer ELV, van den Broeke LJP, Kortlever R, de Jong W, Moultos OA, Vlugt TJH, Ramdin M. Electrochemical Reduction of CO 2 to Oxalic Acid: Experiments, Process Modeling, and Economics. Ind Eng Chem Res 2022; 61:14837-14846. [PMID: 36254199 PMCID: PMC9562277 DOI: 10.1021/acs.iecr.2c02647] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022]
Abstract
![]()
We performed H-cell
and flow cell experiments to study the electrochemical
reduction of CO2 to oxalic acid (OA) on a lead (Pb) cathode
in various nonaqueous solvents. The effects of anolyte, catholyte,
supporting electrolyte, temperature, water content, and cathode potential
on the Faraday efficiency (FE), current density (CD), and product
concentration were investigated. We show that a high FE for OA can
be achieved (up to 90%) at a cathode potential of −2.5 V vs
Ag/AgCl but at relatively low CDs (10–20 mA/cm2).
The FE of OA decreases significantly with increasing water content
of the catholyte, which causes byproduct formation (e.g., formate,
glycolic acid, and glyoxylic acid). A process design and techno-economic
evaluation of the electrochemical conversion of CO2 to
OA is presented. The results show that the electrochemical route for
OA production can compete with the fossil-fuel based route for the
base case scenario (CD of 100 mA/cm2, OA FE of 80%, cell
voltage of 4 V, electrolyzer CAPEX of $20000/m2, electricity
price of $30/MWh, and OA price of $1000/ton). A sensitivity analysis
shows that the market price of OA has a huge influence on the economics.
A market price of at least $700/ton is required to have a positive
net present value and a payback time of less than 10 years. The performance
and economics of the process can be further improved by increasing
the CD and FE of OA by using gas diffusion electrodes and eliminating
water from the cathode, lowering the cell voltage by increasing the
conductivity of the electrolyte solutions, and developing better OA
separation methods.
Collapse
Affiliation(s)
- Vera Boor
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Jeannine E. B. M. Frijns
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Elena Perez-Gallent
- Department of Sustainable Process and Energy Systems, TNO, Leeghwaterstraat 44, 2628 CA Delft, The Netherlands
| | - Erwin Giling
- Department of Sustainable Process and Energy Systems, TNO, Leeghwaterstraat 44, 2628 CA Delft, The Netherlands
| | - Antero T. Laitinen
- VTT Technical Research Centre of Finland, Tietotie 4 E, Espoo 02044, Finland
| | - Earl L. V. Goetheer
- Department of Sustainable Process and Energy Systems, TNO, Leeghwaterstraat 44, 2628 CA Delft, The Netherlands
| | - Leo J. P. van den Broeke
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Ruud Kortlever
- Large-Scale Energy Storage, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Wiebren de Jong
- Large-Scale Energy Storage, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Othonas A. Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Thijs J. H. Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Mahinder Ramdin
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
31
|
|
32
|
Bertella S, Bernardes Figueirêdo M, De Angelis G, Mourez M, Bourmaud C, Amstad E, Luterbacher JS. Extraction and Surfactant Properties of Glyoxylic Acid-Functionalized Lignin. CHEMSUSCHEM 2022; 15:e202200270. [PMID: 35532091 PMCID: PMC9543430 DOI: 10.1002/cssc.202200270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/04/2022] [Indexed: 06/07/2023]
Abstract
The amphiphilic chemical structure of native lignin, composed by a hydrophobic aromatic core and hydrophilic hydroxy groups, makes it a promising alternative for the development of bio-based surface-active compounds. However, the severe conditions traditionally needed during biomass fractionation make lignin prone to condensation and cause it to lose hydrophilic hydroxy groups in favour of the formation of C-C bonds, ultimately decreasing lignin's abilities to lower surface tension of water/oil mixtures. Therefore, it is often necessary to further functionalize lignin in additional synthetic steps in order to obtain a surfactant with suitable properties. In this work, multifunctional aldehyde-assisted fractionation with glyoxylic acid (GA) was used to prevent lignin condensation and simultaneously introduce a controlled amount of carboxylic acid on the lignin backbone for its further use as surfactant. After fully characterizing the extracted GA-lignin, its surface activity was measured in several water/oil systems at different pH values. Then, the stability of water/mineral oil emulsions was evaluated at different pH and over a course of 30 days by traditional photography and microscopy imaging. Further, the use of GA-lignin as a surfactant was investigated in the formulation of a cosmetic hand cream composed of industrially relevant ingredients. Contrary to industrial lignins such as Kraft lignin, GA-lignin did not alter the color or smell of the formulation. Finally, the surface activity of GA-lignin was compared with other lignin-based and fossil-based surfactants, showing that GA-lignin presented similar or better surface-active properties compared to some of the most commonly used surfactants. The overall results showed that GA-lignin, a biopolymer that can be made exclusively from renewable carbon, can successfully be extracted in one step from lignocellulosic biomass. This lignin can be used as an effective surfactant without further modification, and as such is a promising candidate for the development of new bio-based surface-active products.
Collapse
Affiliation(s)
- Stefania Bertella
- Laboratory of Sustainable and Catalytic ProcessingInstitute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)CH-1015LausanneSwitzerland
| | - Monique Bernardes Figueirêdo
- Laboratory of Sustainable and Catalytic ProcessingInstitute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)CH-1015LausanneSwitzerland
| | - Gaia De Angelis
- Soft Materials LaboratoryInstitute of MaterialsÉcole Polytechnique Fédérale de Lausanne (EPFL)CH-1015LausanneSwitzerland
| | - Malcolm Mourez
- Laboratory of Sustainable and Catalytic ProcessingInstitute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)CH-1015LausanneSwitzerland
- Department of ChemistryÉcole PolytechniqueInstitut Polytechnique de Paris91128Palaiseau CedexFrance
| | - Claire Bourmaud
- Laboratory of Sustainable and Catalytic ProcessingInstitute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)CH-1015LausanneSwitzerland
| | - Esther Amstad
- Soft Materials LaboratoryInstitute of MaterialsÉcole Polytechnique Fédérale de Lausanne (EPFL)CH-1015LausanneSwitzerland
| | - Jeremy S. Luterbacher
- Laboratory of Sustainable and Catalytic ProcessingInstitute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)CH-1015LausanneSwitzerland
| |
Collapse
|
33
|
Sustainable polyesters via direct functionalization of lignocellulosic sugars. Nat Chem 2022; 14:976-984. [PMID: 35739426 DOI: 10.1038/s41557-022-00974-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/12/2022] [Indexed: 11/08/2022]
Abstract
The development of sustainable plastics from abundant renewable feedstocks has been limited by the complexity and efficiency of their production, as well as their lack of competitive material properties. Here we demonstrate the direct transformation of the hemicellulosic fraction of non-edible biomass into a tricyclic diester plastic precursor at 83% yield (95% from commercial xylose) during integrated plant fractionation with glyoxylic acid. Melt polycondensation of the resulting diester with a range of aliphatic diols led to amorphous polyesters (Mn = 30-60 kDa) with high glass transition temperatures (72-100 °C), tough mechanical properties (ultimate tensile strengths of 63-77 MPa, tensile moduli of 2,000-2,500 MPa and elongations at break of 50-80%) and strong gas barriers (oxygen transmission rates (100 µm) of 11-24 cc m-2 day-1 bar-1 and water vapour transmission rates (100 µm) of 25-36 g m-2 day-1) that could be processed by injection moulding, thermoforming, twin-screw extrusion and three-dimensional printing. Although standardized biodegradation studies still need to be performed, the inherently degradable nature of these materials facilitated their chemical recycling via methanolysis at 64 °C, and eventual depolymerization in room-temperature water.
Collapse
|
34
|
Cohen KY, Evans R, Dulovic S, Bocarsly AB. Using Light and Electrons to Bend Carbon Dioxide: Developing and Understanding Catalysts for CO 2 Conversion to Fuels and Feedstocks. Acc Chem Res 2022; 55:944-954. [PMID: 35290017 DOI: 10.1021/acs.accounts.1c00643] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our global society generates an unwieldy amount of CO2 per unit time. Therefore, the capture of this greenhouse gas must involve a diverse set of strategies. One solution to this problem is the conversion of CO2 into a more useful chemical species. Again, a multiplicity of syntheses and products will be necessary. No matter how elegant the chemistry is, commercial markets often have little use for a small set of compounds made in tremendous yield. Following this reasoning, the Bocarsly Research Group seeks to develop new electrochemical and photochemical processes that may be of utility in the conversion of CO2 to organic compounds. We focus on investigating proton-coupled charge transfer mechanisms that produce both C1 and carbon-carbon bonded products (C2+).In early work, we considered the reduction of CO2 to formate at electrocatalytic indium and tin electrodes. These studies demonstrated the key role of surface oxides in catalyzing the reduction of CO2. This work generated efficient systems for the formation of formate and paved the way to studies using non-copper, intermetallic electrocatalysts for the generation of C2+ species. Most notable is the efficient formation of oxalate at an oxidized Cr3Ga electrode. Oxalate has recently been suggested as a potential nonfossil, alternate organic feedstock.Separately, we have focused on the electrocatalytic effects of pyridine on the reduction of CO2 in aqueous electrolyte. These studies demonstrated that electrodes that normally yield a low hydrogen overpotential (Pd and Pt) show suppressed H2 evolution and strongly enhanced activity for CO2 reduction in the presence of pyridinium. Methanol was observed to form in high Faradaic yield at low overpotential using this system. The 6-electron, 6-proton reduction of CO2 in the presence of pyridinium was intriguing, and significant effort was placed on understanding the mechanism of this reaction both on metal electrodes and on semiconducting photocathodes. P-GaP electrodes were found to provide exceptional behavior for the formation of methanol using only light as the energy source.The pyridinium studies highlighted the role of protons in the overall reduction of CO2, stimulating our interest in the chemistry of MnBr(bpy)(CO)3 and related compounds. This complex was reported to electrochemically reduce CO2 to CO. We saw these reports as an opportunity to study the detailed nature of the proton-coupled electron transfer (PCET) mechanism associated with CO2 reduction. Our investigation of this system revealed the role of hydrogen-bonding in CO2 reduction and pointed the way for the construction of a photochemical process for CO generation using a [(bpy)(CO)3Mn(CN)Mn(bpy)(CO)3]+ photocatalyst.Based on our studies to date, it appears likely that heterogeneous systems can be assembled to convert CO2 into products that are "beyond C2 products." This may open up new practical chemistry in the area of fossil-based replacements for both synthesis and fuels. Systems with pragmatic efficiencies are close to reality. Electrochemical reactors using heterogeneous electrocatalysts show the stability and product selectivity needed to generate industrial opportunities. Continued growth of mechanistic understanding is expected to facilitate the chemical design of cogent systems for the taming of CO2.
Collapse
Affiliation(s)
- Kailyn Y. Cohen
- Frick Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Rebecca Evans
- Frick Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Stephanie Dulovic
- Frick Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Andrew B. Bocarsly
- Frick Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
35
|
Wang Y, Davey CJE, van der Maas K, van Putten RJ, Tietema A, Parsons JR, Gruter GJM. Biodegradability of novel high T g poly(isosorbide-co-1,6-hexanediol) oxalate polyester in soil and marine environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152781. [PMID: 34990691 DOI: 10.1016/j.scitotenv.2021.152781] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/05/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
In order to reduce the plastic accumulation in the environment, biodegradable plastics are attracting interest in the plastics market. However, the low thermal stability of most amorphous biodegradable polymers limits their application. With the aim of combining high glass transition temperature (Tg), with good (marine) biodegradation a family of novel fully renewable poly(isosorbide-co-diol) oxalate (PISOX-diol) copolyesters was recently developed. In this study, the biodegradability of a representative copolyester, poly(isosorbide-co-1,6-hexanediol) oxalate (PISOX-HDO), with 75/25 mol ratio IS/HDO was evaluated at ambient temperature (25 °C) in soil and marine environment by using a Respicond system with 95 parallel reactors, based on the principle of frequently monitoring CO2 evolution. During 50 days incubation in soil and seawater, PISOX-HDO mineralised faster than cellulose. The ready biodegradability of PISOX-HDO is related to the relatively fast non-enzymatic hydrolysis of polyoxalates. To study the underlying mechanism of PISOX-HDO biodegradation, the non-enzymatic hydrolysis of PISOX-HDO and the biodegradation of the monomers in soil were also investigated. Complete hydrolysis was obtained in approximately 120 days (tracking the formation of hydrolysis products via 1H NMR). It was also shown that (enzymatic) hydrolysis to the constituting monomers is the rate-determining step in this biodegradation mechanism. These monomers can subsequently be consumed and mineralised by (micro)organisms in the environment much faster than the polyesters. The combination of high Tg (>100 °C) and fast biodegradability is quite unique and makes this PISOX-HDO copolyester ideal for short term applications that demand strong mechanical and physical properties.
Collapse
Affiliation(s)
- Yue Wang
- van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Charlie J E Davey
- van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Kevin van der Maas
- van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | | | - Albert Tietema
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - John R Parsons
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Gert-Jan M Gruter
- van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Avantium Support BV, Zekeringstraat 29, 1014 BV Amsterdam, the Netherlands.
| |
Collapse
|
36
|
Marx M, Frauendorf H, Spannenberg A, Neumann H, Beller M. Revisiting Reduction of CO 2 to Oxalate with First-Row Transition Metals: Irreproducibility, Ambiguous Analysis, and Conflicting Reactivity. JACS AU 2022; 2:731-744. [PMID: 35373201 PMCID: PMC8970009 DOI: 10.1021/jacsau.2c00005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Construction of higher C≥2 compounds from CO2 constitutes an attractive transformation inspired by nature's strategy to build carbohydrates. However, controlled C-C bond formation from carbon dioxide using environmentally benign reductants remains a major challenge. In this respect, reductive dimerization of CO2 to oxalate represents an important model reaction enabling investigations on the mechanism of this simplest CO2 coupling reaction. Herein, we present common pitfalls encountered in CO2 reduction, especially its reductive coupling, based on established protocols for the conversion of CO2 into oxalate. Moreover, we provide an example to systematically assess these reactions. Based on our work, we highlight the importance of utilizing suitable orthogonal analytical methods and raise awareness of oxidative reactions that can likewise result in the formation of oxalate without incorporation of CO2. These results allow for the determination of key parameters, which can be used for tailoring of prospective catalytic systems and will promote the advancement of the entire field.
Collapse
Affiliation(s)
- Maximilian Marx
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Holm Frauendorf
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Anke Spannenberg
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Helfried Neumann
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
37
|
Papanikolaou G, Centi G, Perathoner S, Lanzafame P. Catalysis for e-Chemistry: Need and Gaps for a Future De-Fossilized Chemical Production, with Focus on the Role of Complex (Direct) Syntheses by Electrocatalysis. ACS Catal 2022; 12:2861-2876. [PMID: 35280435 PMCID: PMC8902748 DOI: 10.1021/acscatal.2c00099] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/29/2022] [Indexed: 12/29/2022]
Abstract
![]()
The prospects, needs
and limits in current approaches in catalysis
to accelerate the transition to e-chemistry, where
this term indicates a fossil fuel-free chemical production, are discussed.
It is suggested that e-chemistry is a necessary element
of the transformation to meet the targets of net zero emissions by
year 2050 and that this conversion from the current petrochemistry
is feasible. However, the acceleration of the development of catalytic
technologies based on the use of renewable energy sources (indicated
as reactive catalysis) is necessary, evidencing that these are part
of a system of changes and thus should be assessed from this perspective.
However, it is perceived that the current studies in the area are
not properly addressing the needs to develop the catalytic technologies
required for e-chemistry, presenting a series of
relevant aspects and directions in which research should be focused
to develop the framework system transformation necessary to implement e-chemistry.
Collapse
Affiliation(s)
- Georgia Papanikolaou
- University of Messina, Dept. ChiBioFarAm, ERIC aisbl and CASPE/INSTM, V. le F. Stagno d’ Alcontres 31, 98166 Messina, Italy
| | - Gabriele Centi
- University of Messina, Dept. ChiBioFarAm, ERIC aisbl and CASPE/INSTM, V. le F. Stagno d’ Alcontres 31, 98166 Messina, Italy
| | - Siglinda Perathoner
- University of Messina, Dept. ChiBioFarAm, ERIC aisbl and CASPE/INSTM, V. le F. Stagno d’ Alcontres 31, 98166 Messina, Italy
| | - Paola Lanzafame
- University of Messina, Dept. ChiBioFarAm, ERIC aisbl and CASPE/INSTM, V. le F. Stagno d’ Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
38
|
Im S, Saad S, Park Y. Facilitated series electrochemical hydrogenation of oxalic acid to glycolic acid using TiO2 nanotubes. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
39
|
Sakai N, Minato K, Nakata S, Ogiwara Y. Synthesis of Dibenzotetrathiafulvalenes of Oxalic Acid with Electron-Rich Aromatic 1,2-Dithiols and Application to Dithioacetalization with 9-Fluorenecarboxylic Acids or Dicarboxylic Acids. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1742-2821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractWe have developed a two-step synthesis of dibenzotetrathiafulvalene (DBTTF) derivatives by combining the indium-catalyzed reductive dithioacetalization of oxalic acid and electron-rich aromatic dithiols with a subsequent oxidation of the resultant dithioacetals. The same transformation of electron-rich aromatic dithiols with either 9-fluorenecarboxylic acid derivatives or dicarboxylic acids effectively produced the corresponding benzo-1,3-dithiafulvene derivatives.
Collapse
|
40
|
Gutiérrez-Sánchez O, Bohlen B, Daems N, Bulut M, Pant D, Breugelmans T. A State of the Art Update on Integrated CO2 Capture and Electrochemical Conversion Systems. ChemElectroChem 2022. [DOI: 10.1002/celc.202101540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Oriol Gutiérrez-Sánchez
- University of Antwerp Drie Eiken Campus: Universiteit Antwerpen Campus Drie Eiken Faculty of Applied Engineering Prinsstraat 13 2000 Antwerpen BELGIUM
| | - Barbara Bohlen
- University of Antwerp: Universiteit Antwerpen Faculty of Applied Engineering BELGIUM
| | - Nick Daems
- University of Antwerp: Universiteit Antwerpen Faculty of Applied Engineering BELGIUM
| | - Metin Bulut
- Flemish Institute for Technological Research: VITO NV Separation and Conversion Technology BELGIUM
| | - Deepak Pant
- Flemish Institute for Technological Research: VITO NV Separation and Conversion Technology BELGIUM
| | - Tom Breugelmans
- Universiteit Antwerpen Applied Engineering Universiteitsplein 1 2610 Wilrijk BELGIUM
| |
Collapse
|
41
|
Okuda J, Okumura A, Ghana P, Fink F, Schmidt R, Hoffmann A, Spaniol TP, Herres-Pawlis S. Formate Complexes of Tri- and Tetravalent Titanium Supported by a Tris(phenolato)amine Ligand. Dalton Trans 2022; 51:14345-14351. [DOI: 10.1039/d2dt01739c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Titanium(III) and titanium(IV) formate complexes supported by the sterically encumbering tris(phenolato)amine ligand (H3(O3N) = tris(4,6-di-tert-butyl-2-hydroxybenzyl)amine) are described. Salt metathesis of the chlorido precursor [(O3N)TiCl] (1-Cl) with sodium formate in a...
Collapse
|
42
|
Schuler E, Stoop M, Shiju NR, Gruter GJM. Stepping Stones in CO 2 Utilization: Optimizing the Formate to Oxalate Coupling Reaction Using Response Surface Modeling. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:14777-14788. [PMID: 34777925 PMCID: PMC8579406 DOI: 10.1021/acssuschemeng.1c04539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/12/2021] [Indexed: 06/13/2023]
Abstract
One of the crucial steps for the conversion of CO2 into polymers is the catalytic formate to oxalate coupling reaction (FOCR). Formate can be obtained from the (electro)catalytic reduction of CO2, while oxalate can be further processed toward building blocks for modern plastics. In its 175 year history, multiple parameters for the FOCR have been suggested to be of importance. Yet, no comprehensive understanding considering all those parameters is available. Hence, we aim to assess the relative impact of all those parameters and deduce the optimal reaction conditions for the FOCR. We follow a systematic two-stage approach in which we first evaluate the most suitable categorical variables of catalyst, potential poisons, and reaction atmospheres. In the second stage, we evaluate the impact of the continuous variables temperature, reaction time, catalyst loading, and active gas removal within previously proposed ranges, using a response surface modeling methodology. We found KOH to be the most suitable catalyst, and it allows yields of up to 93%. Water was found to be the strongest poison, and its efficient removal increased oxalate yields by 35%. The most promising reaction atmosphere is hydrogen, with the added benefit of being equal to the gas produced in the reaction. The temperature has the highest impact on the reaction, followed by reaction time and purge rates. We found no significant impact of catalyst loading on the reaction within the ranges reported previously. This research provides a clear and concise multiparameter optimization of the FOCR and provides insight into the reaction cascade involving the formation and decomposition of oxalates from formate.
Collapse
Affiliation(s)
- Eric Schuler
- Van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, The Netherlands
| | - Marit Stoop
- Van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, The Netherlands
| | - N. Raveendran Shiju
- Van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, The Netherlands
| | - Gert-Jan M. Gruter
- Van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, The Netherlands
- Avantium
Chemicals BV, Zekeringstraat
29, 1014 BV Amsterdam, The Netherlands
| |
Collapse
|