1
|
Shin Y, Lee HS, Hong YJ, Sunwoo SH, Park OK, Choi SH, Kim DH, Lee S. Low-impedance tissue-device interface using homogeneously conductive hydrogels chemically bonded to stretchable bioelectronics. SCIENCE ADVANCES 2024; 10:eadi7724. [PMID: 38507496 PMCID: PMC10954228 DOI: 10.1126/sciadv.adi7724] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
Stretchable bioelectronics has notably contributed to the advancement of continuous health monitoring and point-of-care type health care. However, microscale nonconformal contact and locally dehydrated interface limit performance, especially in dynamic environments. Therefore, hydrogels can be a promising interfacial material for the stretchable bioelectronics due to their unique advantages including tissue-like softness, water-rich property, and biocompatibility. However, there are still practical challenges in terms of their electrical performance, material homogeneity, and monolithic integration with stretchable devices. Here, we report the synthesis of a homogeneously conductive polyacrylamide hydrogel with an exceptionally low impedance (~21 ohms) and a reasonably high conductivity (~24 S/cm) by incorporating polyaniline-decorated poly(3,4-ethylenedioxythiophene:polystyrene). We also establish robust adhesion (interfacial toughness: ~296.7 J/m2) and reliable integration between the conductive hydrogel and the stretchable device through on-device polymerization as well as covalent and hydrogen bonding. These strategies enable the fabrication of a stretchable multichannel sensor array for the high-quality on-skin impedance and pH measurements under in vitro and in vivo circumstances.
Collapse
Affiliation(s)
- Yoonsoo Shin
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Su Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ok Kyu Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sueng Hong Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangkyu Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Song Y, Tang J, Qi Y, Zhang J, Li Y, Wang F. A review on the dominating factor for the conductivity enhancement of PEDOTs: The affinity of polyanion shell toward post-processing reagents? POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|