1
|
Kuimov VA, Malysheva SF, Belogorlova NA, Fattakhov RI, Albanov AI, Bagryanskaya IY, Tikhonov NI, Trofimov BA. Straightforward Superbase-Mediated Reductive O-Phosphorylation of Aromatic and Heteroaromatic Ketones with Red Phosphorus in the Superbase Suspension KOH/DMSO(H 2O). Molecules 2025; 30:1367. [PMID: 40142143 PMCID: PMC11946803 DOI: 10.3390/molecules30061367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
It was shown for the first time that diaryl(hetaryl)ketones are capable of directly phosphorylating with red phosphorus in the superbase suspension KOH/DMSO(H2O) at 85 °C for 1.5 h to afford potassium bis(diaryl(hetaryl)methyl)phosphates that were earlier inaccessible in a yield of up to 45%. The ESR data demonstrate that unlike previously published phosphorylation with elemental phosphorus, this new phosphorylation reaction proceeds via a single electron transfer from polyphospide anions to diaryl(hetaryl)ketones. This is the first example of the C-O-P bond generation during the phosphorylation with elemental phosphorus in strongly basic media, which usually provides C-P bond formation.
Collapse
Affiliation(s)
- Vladimir A. Kuimov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russia; (V.A.K.); (S.F.M.); (N.A.B.); (R.I.F.); (A.I.A.); (N.I.T.)
| | - Svetlana F. Malysheva
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russia; (V.A.K.); (S.F.M.); (N.A.B.); (R.I.F.); (A.I.A.); (N.I.T.)
| | - Natalia A. Belogorlova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russia; (V.A.K.); (S.F.M.); (N.A.B.); (R.I.F.); (A.I.A.); (N.I.T.)
| | - Ruslan I. Fattakhov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russia; (V.A.K.); (S.F.M.); (N.A.B.); (R.I.F.); (A.I.A.); (N.I.T.)
| | - Alexander I. Albanov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russia; (V.A.K.); (S.F.M.); (N.A.B.); (R.I.F.); (A.I.A.); (N.I.T.)
| | - Irina Yu. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Nikolay I. Tikhonov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russia; (V.A.K.); (S.F.M.); (N.A.B.); (R.I.F.); (A.I.A.); (N.I.T.)
| | - Boris A. Trofimov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russia; (V.A.K.); (S.F.M.); (N.A.B.); (R.I.F.); (A.I.A.); (N.I.T.)
| |
Collapse
|
2
|
Hussain WA, Parasram M. Recent Advances in Photoinduced Oxidative Cleavage of Alkenes. SYNTHESIS-STUTTGART 2024; 56:1775-1786. [PMID: 39144683 PMCID: PMC11323056 DOI: 10.1055/s-0042-1751534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Oxidative cleavage of alkenes leading to valuable carbonyl derivatives is a fundamental transformation in synthetic chemistry. In particular, ozonolysis is the mainstream method for the oxidative cleavage of alkenes that has been widely implemented in the synthesis of natural products and pharmaceutically relevant compounds. However, due to the toxicity and explosive nature of ozone, alternative approaches employing transition metals and enzymes in the presence of oxygen and/or strong oxidants have been developed. These protocols are often conducted under harsh reaction conditions that limit the substrate scope. Photochemical approaches can provide milder and more practical alternatives for this synthetically useful transformation. In this review, we outline recent visible-light-promoted oxidative cleavage reactions that involve photocatalytic activation of oxygen via electron transfer and energy transfer. Also, an emerging field featuring visible-light-promoted oxidative cleavage under anaerobic conditions is discussed. The methods highlighted in this review represent a transformative step toward more sustainable and efficient strategies for the oxidative cleavage of alkenes.
Collapse
Affiliation(s)
- Waseem A Hussain
- Department of Chemistry, New York University, 29 Washington Pl, New York, New York 10003, USA
| | - Marvin Parasram
- Department of Chemistry, New York University, 29 Washington Pl, New York, New York 10003, USA
| |
Collapse
|
3
|
Zhu H, Zhao J, Duan L, Zhao G, Yu Z, Li J, Sun H, Meng Q. Low-Temperature Synthesis of Cyano-Rich Modified Surface-Alkalinized Heterojunctions with Directional Charge Transfer for Photocatalytic In Situ Generation and Consumption of Peroxides. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6008-6024. [PMID: 38282284 DOI: 10.1021/acsami.3c18293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The synthesis of low-temperature poly(heptazine imide) (PHI) presents a significant challenge. In this context, we have developed a novel low-temperature synthesis strategy for PHI in this work. This strategy involves the introduction of Na+ ions, which etch and disrupt the conjugated structure of carbon nitride (CN) during assisted thermal condensation. This disruption leads to the partial decomposition of the heptazine ring structure, resulting in the formation of C≡N functionalities on the CN surface, which are enriched with hydroxyl groups and undergo cyano modification. The formation of heterojunctions between CN and ZnO, which facilitate charge transfer along an immobilization pathway, accelerated charge transfer processes and improved reactant adsorption as well as electron utilization efficiency. The resulting catalyst was employed for the room temperature, atmospheric pressure, and solvent-free photocatalytic selective oxidation of cumene (CM), achieving a cumene conversion rate of 28.7% and a remarkable selectivity of 92.0% toward the desired product, cumene hydroperoxide (CHP). Furthermore, this CHP induced oxidative reactions, as demonstrated by the successful oxidation of benzylamine to imine and the oxidation of sulfide to sulfoxide, both yielding high product yields. Additionally, the utilization of a continuous-flow device significantly reduces the reaction time required for these oxidation processes. This work not only introduces an innovative approach to environmentally friendly, sustainable, clean, and efficient PHI synthesis but also underscores the promising potential and advantages of carbon nitride-based photocatalysts in the realm of sustainable and green organic transformations.
Collapse
Affiliation(s)
- Hongfei Zhu
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingnan Zhao
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liyuan Duan
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guofeng Zhao
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zongyi Yu
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jianing Li
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Huinan Sun
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qingwei Meng
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P. R. China
| |
Collapse
|
4
|
Xiong J, Yuan X, Zong MH, Wu X, Lou WY. Iron-incorporated metal-organic frameworks for oxidative cleavage of trans-anethole to p-anisaldehyde. NANOSCALE 2023. [PMID: 38051109 DOI: 10.1039/d3nr04795d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
An iron-incorporated Zn-MOF catalyst Zn-bpydc·Fe was fabricated for the oxidative cleavage of trans-anethole to p-anisaldehyde under facile conditions, under 1 atm of O2. The Fe coordinated bipyridine serves as the catalytically active center inside the structural skeleton of Zn-MOFs. This work affords a new avenue for the mild oxidation of olefins.
Collapse
Affiliation(s)
- Jun Xiong
- Lab of Applied Biocatalysis, National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
| | - Xin Yuan
- Lab of Applied Biocatalysis, National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
| | - Min-Hua Zong
- Lab of Applied Biocatalysis, National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
| | - Xiaoling Wu
- Lab of Applied Biocatalysis, National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China
| |
Collapse
|
5
|
Widness JK, Enny DG, McFarlane-Connelly KS, Miedenbauer MT, Krauss TD, Weix DJ. CdS Quantum Dots as Potent Photoreductants for Organic Chemistry Enabled by Auger Processes. J Am Chem Soc 2022; 144:12229-12246. [PMID: 35772053 DOI: 10.1021/jacs.2c03235] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Strong reducing agents (<-2.0 V vs saturated calomel electrode (SCE)) enable a wide array of useful organic chemistry, but suffer from a variety of limitations. Stoichiometric metallic reductants such as alkali metals and SmI2 are commonly employed for these reactions; however, considerations including expense, ease of use, safety, and waste generation limit the practicality of these methods. Recent approaches utilizing energy from multiple photons or electron-primed photoredox catalysis have accessed reduction potentials equivalent to Li0 and shown how this enables selective transformations of aryl chlorides via aryl radicals. However, in some cases, low stability of catalytic intermediates can limit turnover numbers. Herein, we report the ability of CdS nanocrystal quantum dots (QDs) to function as strong photoreductants and present evidence that a highly reducing electron is generated from two consecutive photoexcitations of CdS QDs with intermediate reductive quenching. Mechanistic experiments suggest that Auger recombination, a photophysical phenomenon known to occur in photoexcited anionic QDs, generates transient thermally excited electrons to enable the observed reductions. Using blue light-emitting diodes (LEDs) and sacrificial amine reductants, aryl chlorides and phosphate esters with reduction potentials up to -3.4 V vs SCE are photoreductively cleaved to afford hydrodefunctionalized or functionalized products. In contrast to small-molecule catalysts, QDs are stable under these conditions and turnover numbers up to 47 500 have been achieved. These conditions can also effect other challenging reductions, such as tosylate protecting group removal from amines, debenzylation of benzyl-protected alcohols, and reductive ring opening of cyclopropane carboxylic acid derivatives.
Collapse
Affiliation(s)
- Jonas K Widness
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| | - Daniel G Enny
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| | | | - Mahilet T Miedenbauer
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Todd D Krauss
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Daniel J Weix
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Enhanced oil recovery: QM/MM based descriptors for anionic surfactant salt-resistance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|