1
|
Zhang Y, Liu R, Ma Y, Jian N, Ge H, Pan H, Zhang Y, Zhang C, Liu Y, Deng J, Li L, Zhao J, Yu J, Cabot A, Li J. Surface Selenium Coating Promotes Selective Methanol-to-Formate Electrooxidation on Ni 3Se 4 Nanoparticles. Inorg Chem 2024; 63:23328-23337. [PMID: 39565610 DOI: 10.1021/acs.inorgchem.4c03996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In the quest to replace fossil fuels and reduce carbon dioxide emissions, developing energy technologies based on clean catalytic processes is fundamental. However, the cost-effectiveness of these technologies strongly relies on the availability of efficient catalysts made of abundant elements. Herein, this study presents a one-step hydrothermal method to obtain a series of Ni3Se4 nanoparticles with a layer of amorphous selenium on their surface. When employed as electrocatalysts for the methanol oxidation reaction (MOR), the optimized proper surface Se-coated Ni3Se4 nanoparticles exhibit a high current density of 160 mA cm-2 at 1.6 V, achieving a high methanol-to-formate Faradaic efficiency above 97.8% and excellent stability with less than 20% current decay after an 18 h chronoamperometry test. This excellent performance is rationalized using density functional theory calculations, which unveil that the electrochemical recombination of SeOx results in a reduction of the energy barrier for the dehydrogenation of methanol during the MOR process.
Collapse
Affiliation(s)
- Yong Zhang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Yi Ma
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ning Jian
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Huan Ge
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Huiyan Pan
- School of Biological and Chemical Engineering, Nanyang Institute of Science and Technology, Nanyang 473004, China
| | - Yu Zhang
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chaoqi Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yongliang Liu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jie Deng
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Luming Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jun Zhao
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jing Yu
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, 08930 Barcelona, Catalonia, Spain
| | - Andreu Cabot
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, 08930 Barcelona, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Junshan Li
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
2
|
Ma Y, Li L, Zhang Y, Jian N, Pan H, Deng J, Li J. Nickel foam supported Mn-doped NiFe-LDH nanosheet arrays as efficient bifunctional electrocatalysts for methanol oxidation and hydrogen evolution. J Colloid Interface Sci 2024; 663:971-980. [PMID: 38447410 DOI: 10.1016/j.jcis.2024.02.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Electrochemical upgrading methanol into value-added formate at the anode in alkaline media enables the boosting production of hydrogen fuel at the cathode with saved energy. To achieve such a cost-effective and efficient electrocatalytic process, herein this work presents a Mn-doped nickel iron layered double hydroxides supported on nickel foam, derived from a simple hydrothermal synthesis. This developed electrocatalyst could act as an efficient bifunctional electrocatalyst for methanol-to-formate with a high faradaic efficiency of nearly 100 %, and for hydrogen evolution reaction, at an external potential of 1.5 V versus reversible hydrogen electrode. Additionally, a current density of 131.1 mA cm-2 with a decay of merely 12.2 % over 120 h continuous long-term testing was generated in co-electrocatalysis of water/methanol solution. Further density functional theoretical calculations were used to unravel the methanol-to-formate reaction mechanism arising from the doping of Fe and/or Mn. This work offers a good example of co-electrocatalysis to produce formate and green hydrogen fuel using a bifunctional electrocatalyst.
Collapse
Affiliation(s)
- Yi Ma
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Luming Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yong Zhang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ning Jian
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Huiyan Pan
- School of Biological and Chemical Engineering, Nanyang Institute of Science and Technology, Nanyang 473004, China
| | - Jie Deng
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Junshan Li
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, China; State Key Laboratory of Environmental-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
3
|
Li K, Tong Y, He J, Liu XY, Chen P. Anion-modulated CoP electrode as bifunctional electrocatalyst for anion-exchange membrane hydrazine-assisted water electrolyser. MATERIALS HORIZONS 2023; 10:5277-5287. [PMID: 37750287 DOI: 10.1039/d3mh00872j] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The hydrazine oxidation reaction (HzOR) is considered as a promising alternative process of the oxygen evolution reaction (OER) to realize more energy-efficient hydrogen generation. However, the lack of highly active bifunctional catalysts poses a huge challenge to this strategy. In this work, we report a novel and universal electrodeposition strategy to rationally synthesize a self-supporting electrode. The utilization of ammonium fluoride helps to modulate not only the morphology of CoP, but also the synchronous formation of an anion-modified structure, leading to an excellent bifunctional performance. The optimal F-CoP/CF exhibits small potentials of -90 mV and 41 mV at 1 A cm-2, high stability and low Tafel slopes of 28 mV dec-1 and 3.26 mV dec-1 for the HER and HzOR, respectively. The highly efficient and stable bifunctional activity of F-CoP/CF can be further confirmed in an anion-exchange membrane hydrazine-assisted water electrolyzer (0.49 V at 1 A cm-2). Utilizing the density functional theory calculations, the optimized adsorption energy of water molecules and hydrogen intermediates of the HER as well as the rate-determining step of the HzOR are demonstrated for the F-CoP.
Collapse
Affiliation(s)
- Kaixun Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yun Tong
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - JinFeng He
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Pengzuo Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Yu L, Wu P, Tian T, He X, Fan M, Cui L. Crystalline/amorphous composite interface of CoP@Ni/Fe-P as a boosted electrocatalyst for full water splitting. Dalton Trans 2023; 52:11941-11948. [PMID: 37575068 DOI: 10.1039/d3dt01745a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Heterojunction materials have become good candidates for electrocatalysts thanks to their unique physicochemical merits. Herein, a crystalline-amorphous CoP@Ni/Fe-P heterojunction is constructed for whole water splitting. Originating from the strong electronic reaction at the amorphous-crystal interfaces, the electron density of Co, Ni, Fe and P is adjusted, which will optimize the adsorption and desorption energy of intermediates for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) and lower the kinetic barrier. The CoP@Ni/Fe-P heterojunction displays overpotentials of 125 and 250 mV to drive a current density of 10 mA cm-2 in 1 M KOH. In addition, the whole water splitting performance requires a cell voltage of 1.56 V to deliver 10 mA cm-2 and shows good stability. This work provides a way to design and prepare transition-metal-based materials with good electrocatalytic activity by constructing a crystalline and amorphous heterojunction.
Collapse
Affiliation(s)
- Lijuan Yu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China.
| | - Peilin Wu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China.
| | - Tenghui Tian
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China.
| | - Xingquan He
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China.
| | - Meihong Fan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China.
| | - Lili Cui
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China.
| |
Collapse
|
5
|
Meng F, Wu Q, Elouarzaki K, Luo S, Sun Y, Dai C, Xi S, Chen Y, Lin X, Fang M, Wang X, Mandler D, Xu ZJ. Essential role of lattice oxygen in methanol electrochemical refinery toward formate. SCIENCE ADVANCES 2023; 9:eadh9487. [PMID: 37624888 PMCID: PMC10456837 DOI: 10.1126/sciadv.adh9487] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Developing technologies based on the concept of methanol electrochemical refinery (e-refinery) is promising for carbon-neutral chemical manufacturing. However, a lack of mechanism understanding and material properties that control the methanol e-refinery catalytic performances hinders the discovery of efficient catalysts. Here, using 18O isotope-labeled catalysts, we find that the oxygen atoms in formate generated during the methanol e-refinery reaction can originate from the catalysts' lattice oxygen and the O-2p-band center levels can serve as an effective descriptor to predict the catalytic performance of the catalysts, namely, the formate production rates and Faradaic efficiencies. Moreover, the identified descriptor is consolidated by additional catalysts and theoretical mechanisms from density functional theory. This work provides direct experimental evidence of lattice oxygen participation and offers an efficient design principle for the methanol e-refinery reaction to formate, which may open up new research directions in understanding and designing electrified conversions of small molecules.
Collapse
Affiliation(s)
- Fanxu Meng
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, NEW-CREATE Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Qian Wu
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Kamal Elouarzaki
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Songzhu Luo
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yuanmiao Sun
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chencheng Dai
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, A*STAR, 1 Pesek Road, Singapore 627833, Singapore
| | - Yubo Chen
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xinlong Lin
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Daniel Mandler
- Singapore-HUJ Alliance for Research and Enterprise, NEW-CREATE Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Zhichuan J. Xu
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, NEW-CREATE Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
6
|
Phan LP, Tran TTN, Truong TK, Yu J, Nguyen HVT, Phan TB, Thi Tran NH, Tran NQ. Highly Efficient and Stable Hydrogen Evolution from Natural Seawater by Boron-Doped Three-Dimensional Ni 2P-MoO 2 Heterostructure Microrod Arrays. J Phys Chem Lett 2023; 14:7264-7273. [PMID: 37555944 DOI: 10.1021/acs.jpclett.3c01697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The rational design of highly active and stable electrocatalysts toward the hydrogen evolution reaction (HER) is highly desirable but challenging in seawater electrolysis. Herein we propose a strategy of boron-doped three-dimensional Ni2P-MoO2 heterostructure microrod arrays that exhibit excellent catalytic activity for hydrogen evolution in both alkaline freshwater and seawater electrolytes. The incorporation of boron into Ni2P-MoO2 heterostructure microrod arrays could modulate the electronic properties, thereby accelerating the HER. Consequently, the B-Ni2P-MoO2 heterostructure microrod array electrocatalyst exhibits a superior catalyst activity for HER with low overpotentials of 155, 155, and 157 mV at a current density of 500 mA cm-2 in 1 M KOH, 1 M KOH + NaCl, and 1 M KOH + seawater, respectively. It also exhibits exceptional performance for HER in natural seawater with a low overpotential of 248 mV at 10 mA cm-2 and a long-lasting lifetime of over 100 h.
Collapse
Affiliation(s)
- Le Phuc Phan
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam
| | - Thuy Tien Nguyen Tran
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam
| | - Thuy-Kieu Truong
- Institute of Physics, National Institute of Applied Mechanics and Information, Vietnam Academy of Science and Technology, Ho Chi Minh 710116, Vietnam
| | - Jianmin Yu
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Hanh-Vy Tran Nguyen
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thang Bach Phan
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nhu Hoa Thi Tran
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam
| | - Ngoc Quang Tran
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
7
|
Liu SS, Ma LJ, Li JS. Dual-metal-organic-framework derived CoP/MoP hybrid as an efficient electrocatalyst for acidic and alkaline hydrogen evolution reaction. J Colloid Interface Sci 2022; 631:147-153. [DOI: 10.1016/j.jcis.2022.10.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
8
|
Liu SS, Li JS. The facile synthesis of FeP/CoP confined in N, P co-doped carbon derived from MOFs for an efficient pH-universal hydrogen evolution reaction. Dalton Trans 2022; 51:12307-12313. [PMID: 35900015 DOI: 10.1039/d2dt02002e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical hydrogen production is greatly limited by the low efficiency, high cost, and poor stability of electrocatalysts. Here, we report a facile one-step method to synthesize nitrogen, phosphorus co-doped carbon encapsulated FeP/CoP derived from dual metal-organic frameworks (FeP/CoP@NPC). Thanks to the synergistic effect of its unique composition and structure, the resultant FeP/CoP@NPC shows excellent catalytic HER performance with low potentials of 198, 286, and 339 mV to achieve a current density of 10 mA cm-2 in acidic, neutral, and alkaline media along with remarkable long-time durability, respectively. More importantly, this work provides an efficient strategy for fabricating high-performance and stable pH-universal catalysts toward hydrogen generation.
Collapse
Affiliation(s)
- Shan-Shan Liu
- College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China
| | - Ji-Sen Li
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu 273155, P. R. China.
| |
Collapse
|
9
|
Tian X, Yi P, Sun J, Li C, Liu R, Sun JK. The Scalable Solid-State Synthesis of a Ni5P4/Ni2P–FeNi Alloy Encapsulated into a Hierarchical Porous Carbon Framework for Efficient Oxygen Evolution Reactions. NANOMATERIALS 2022; 12:nano12111848. [PMID: 35683704 PMCID: PMC9182157 DOI: 10.3390/nano12111848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022]
Abstract
The exploration of high-performance and low-cost electrocatalysts towards the oxygen evolution reaction (OER) is essential for large-scale water/seawater splitting. Herein, we develop a strategy involving the in situ generation of a template and pore-former to encapsulate a Ni5P4/Ni2P heterojunction and dispersive FeNi alloy hybrid particles into a three-dimensional hierarchical porous graphitic carbon framework (labeled as Ni5P4/Ni2P–FeNi@C) via a room-temperature solid-state grinding and sodium-carbonate-assisted pyrolysis method. The synergistic effect of the components and the architecture provides a large surface area with a sufficient number of active sites and a hierarchical porous pathway for efficient electron transfer and mass diffusion. Furthermore, a graphitic carbon coating layer restrains the corrosion of alloy particles to boost the long-term durability of the catalyst. Consequently, the Ni5P4/Ni2P–FeNi@C catalyst exhibits extraordinary OER activity with a low overpotential of 242 mV (10 mA cm−2), outperforming the commercial RuO2 catalyst in 1 M KOH. Meanwhile, a scale-up of the Ni5P4/Ni2P–FeNi@C catalyst created by a ball-milling method displays a similar level of activity to the above grinding method. In 1 M KOH + seawater electrolyte, Ni5P4/Ni2P–FeNi@C also displays excellent stability; it can continuously operate for 160 h with a negligible potential increase of 2 mV. This work may provide a new avenue for facile mass production of an efficient electrocatalyst for water/seawater splitting and diverse other applications.
Collapse
Affiliation(s)
- Xiangyun Tian
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; (X.T.); (P.Y.); (C.L.)
| | - Peng Yi
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; (X.T.); (P.Y.); (C.L.)
| | - Junwei Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China;
| | - Caiyun Li
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; (X.T.); (P.Y.); (C.L.)
| | - Rongzhan Liu
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; (X.T.); (P.Y.); (C.L.)
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China
- Correspondence: (R.L.); (J.-K.S.)
| | - Jian-Kun Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China;
- Correspondence: (R.L.); (J.-K.S.)
| |
Collapse
|
10
|
Hassan AM, Al-Shalabi EW, Ayoub MA. Updated Perceptions on Polymer-Based Enhanced Oil Recovery Toward High-Temperature High-Salinity Tolerance for Successful Field Applications in Carbonate Reservoirs. Polymers (Basel) 2022; 14:polym14102001. [PMID: 35631882 PMCID: PMC9147962 DOI: 10.3390/polym14102001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
The aging of the existing reservoirs makes the hydrocarbon extraction shift toward newer reserves, and harsh conditioned carbonates, which possess high temperature and high salinity (HTHS). Conventional polymer-flooding fails in these HTHS carbonates, due to precipitation, viscosity loss, and polymer adsorption. Therefore, to counteract these challenges, novel polymer-based cEOR alternatives employ optimized polymers, polymer–surfactant, and alkali–surfactant–polymer solutions along with hybrid methods, which have shown a potential to target the residual or remaining oils in carbonates. Consequently, we investigate novel polymers, viz., ATBS, Scleroglucan, NVP-based polymers, and hydrophobic associative polymers, along with bio-polymers. These selected polymers have shown low shear sensitivity, low adsorption, and robust thermal/salinity tolerance. Additionally, adding an alkali-surfactant to polymer solution produces a synergy effect of improved mobility control, wettability alteration, and interfacial-tension reduction. Thus, enhancing the displacement and sweep efficiencies. Moreover, low-salinity water can precondition high-salinity reservoirs before polymer flooding (hybrid method), to decrease polymer adsorption and viscosity loss. Thus, this paper is a reference for novel polymers, and their hybrid techniques, to improve polymer-based cEOR field applications under HTHS conditions in carbonates. Additionally, the recommendations can assist in project designs with reasonable costs and minimal environmental impact. The implication of this work will aid in supplementing the oil and gas energy sector growth, making a positive contribution to the Middle Eastern economy.
Collapse
Affiliation(s)
- Anas M. Hassan
- Petroleum Engineering Department, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates;
- Correspondence:
| | - Emad W. Al-Shalabi
- Petroleum Engineering Department, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates;
| | - Mohammed A. Ayoub
- Petroleum Engineering Department, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Malaysia;
| |
Collapse
|