1
|
Lyi C, Kim Y. Strain-Driven Higher-Order Topological Dirac Semimetal in Noncentrosymmetric γ-GeSe. NANO LETTERS 2025; 25:6592-6598. [PMID: 40219959 DOI: 10.1021/acs.nanolett.5c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Strain-engineered topological phases in noncentrosymmetric materials offer fertile ground for realizing exotic quantum states, yet their experimental realization remains elusive. Here, using first-principles calculations, we demonstrate that the van der Waals layered material γ-GeSe undergoes a sequence of strain-induced topological phase transitions, including the emergence of a higher-order topological Dirac semimetal phase. Under in-plane biaxial tensile strain, we uncover a sequential evolution of topological phases, including topological nodal-line semimetals, Dirac semimetals, and a higher-order topological Dirac semimetal phase. Notably, the noncentrosymmetric higher-order topological Dirac semimetal phase is characterized by Dirac points coexisting with higher-order topological insulating phases on the kz = 0 plane, enabled by quantization of the mirror-resolved Zak phase. These findings position γ-GeSe as an experimentally viable platform for investigating strain-engineered topological phenomena unique to noncentrosymmetric systems.
Collapse
Affiliation(s)
- Churlhi Lyi
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Youngkuk Kim
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
2
|
Li L, Tan R, Ouyang Y, Wei X, Tang Z. Prediction of two-dimensional C 3N 2 semiconductors with outstanding stability, moderate band gaps, and high carrier mobility. Dalton Trans 2024; 53:13055-13064. [PMID: 39034712 DOI: 10.1039/d4dt01369g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Two-dimensional (2D) semiconductors with suitable band gaps, high carrier mobility, and environmental stability are crucial for applications in the next generation of electronics and optoelectronics. However, current candidate materials each have one or more issues. In this work, two novel C3N2 monolayers, P-C3N2 and I-C3N2 are proposed by first-principles calculations. Both structures have demonstrated excellent dynamical and mechanical stability, with thermal stability approaching 3000 K. Importantly, P-C3N2 shows a distinct advantage in formation energy compared to currently synthesized 2D carbon nitride materials, indicating its potential for experimental synthesis. Electronic structure calculations reveal that both P-C3N2 and I-C3N2 are intrinsic semiconductors with moderate band gaps of 2.19 and 1.81 eV, respectively. Additionally, both C3N2 monolayers display high absorption coefficients up to 105 cm-1, with P-C3N2 showing significant absorption capabilities in the visible light region. Remarkably, P-C3N2 possesses an ultra-high carrier mobility of up to 104 cm2 V-1 s-1. These findings provide theoretical insights and candidates for future applications in the electronics and optoelectronics fields.
Collapse
Affiliation(s)
- Longhui Li
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Rui Tan
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Yulou Ouyang
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Xiaolin Wei
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Zhenkun Tang
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
| |
Collapse
|
3
|
Tan R, Chen X, Dai L, Ouyang Y, Cao L, Tang Z, Ma M, Wei X, Zhong G. Strong mechanical anisotropy and an anisotropic Dirac state in 2D C 5N 3. Phys Chem Chem Phys 2024; 26:11782-11788. [PMID: 38566583 DOI: 10.1039/d4cp00608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Two-dimensional (2D) carbon nitride materials have emerged as a versatile platform for the design of high-performance nanoelectronics, but strong anisotropy in 2D carbon nitrides has rarely been reported. In this work, a 2D carbon nitride with strong anisotropy composed of tetra-, penta-, and hexa-rings (named as TPH-C5N3) is proposed. This TPH-C5N3 exhibits both dynamical and mechanical stability. Furthermore, it also showcases remarkable thermal stability, reaching up to 2300 K, as evidenced by AIMD simulations conducted in an NVT environment utilizing the Nosé-Hoover thermostat. Significantly, TPH-C5N3 demonstrates high anisotropic ratios in its mechanical properties, positioning it as the frontrunner in the current carbon nitride systems. In addition, a Dirac cone with an anisotropic ratio of 55.8% and Fermi velocity of 7.26 × 105 m s-1 is revealed in TPH-C5N3. The nontrivial topological properties of TPH-C5N3 are demonstrated by a non-zero Z2 invariant and topologically protected edge states. Our study offers theoretical insights into an anisotropic 2D carbon nitride material, laying the groundwork for its design and synthesis.
Collapse
Affiliation(s)
- Rui Tan
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Xueqing Chen
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Liyufen Dai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Yulou Ouyang
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Liemao Cao
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Zhenkun Tang
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Ming Ma
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Xiaolin Wei
- Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Gaokuo Zhong
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
4
|
Luo M, Cai X, Ni Y, Chen Y, Guo C, Wang H. From Porphyrin-Like Rings to High-Density Single-Atom Catalytic Sites: Unveiling the Superiority of p-C 2N for Bifunctional Oxygen Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:807-818. [PMID: 38143306 DOI: 10.1021/acsami.3c15264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
With effective utilization of the catalytic site, single-atom catalysts (SACs) supported by nitrogen atoms surrounding built-in pores of two-dimensional (2D) materials, such as porphyrin/phthalocyanine-based covalent organic frameworks, have been highly promising electrocatalysts in the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) processes for the air electrode of the metal-air battery. However, the number of stable single-atom anchoring sites, i.e., accessible single-atom metal sites, has been concerning as a result of the appearance of heterogeneous or large and even supersized pores in substrate materials. 2D porous graphitic carbon nitride (PGCN) with a stronger stability and smaller component is regarded as a more potential alternative owing to similar controllability and designability. In this work, inspired by the robust coordinated TM-N4 environment of porphyrin/phthalocyanine molecules, novel p-C2N with a high density of porphyrin-like organic units is rationally designed. In well-designed p-C2N, a higher homogeneity and uniformity of coordination sites can enhance the electrocatalytic activity in the whole catalytic material and better prevent SACs from sintering and agglomerating into thermodynamically stable nanoclusters. Utilizing density functional theory (DFT), the stability of the p-C2N monolayer, TM@p-C2N, and OER/ORR catalytic activities of TM@p-C2N (TM including Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au) are systematically evaluated. Among them, Ir@p-C2N (0.31 V of the OER and 0.36 V of the ORR), Co@p-C2N (0.47 and 0.22 V), and Rh@p-C2N (0.55 and 0.27 V) are screened as promising SACs for the bifunctional ORR and OER. The proposal of p-C2N guides a new direction for the development of TM-N-C-based SAC bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Mengyi Luo
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| | - Xinyong Cai
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis 08-03, Singapore 13863, Singapore
| | - Yuxiang Ni
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| | - Yuanzheng Chen
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| | - Chunsheng Guo
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| | - Hongyan Wang
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| |
Collapse
|
5
|
Yang L, Zhang Y, Huang Y, Deng L, Luo Q, Li X, Jiang J. Promoting Oxygen Reduction Reaction on Carbon-based Materials by Selective Hydrogen Bonding. CHEMSUSCHEM 2023; 16:e202300082. [PMID: 37086395 DOI: 10.1002/cssc.202300082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Electrochemical oxygen reduction reaction (ORR) is fundamental for many energy conversion and storage devices. Selective tuning of *OOH/*OH adsorption energy to break the intrinsic scaling limitation (ΔG*OOH =ΔG*OH +3.2 eV) is effective in optimizing the ORR limiting potential (UL ), which is practically challenging to achieve by constructing a particular catalyst. Herein, using first-principles calculations, we elucidated how to rationally plant an additional *OH that can selectively interact with the ORR intermediate of *OOH via hydrogen bonding, while not affecting the *OH intermediate. Guided by the design principle, we successfully tailored a series of novel carbon-based catalysts, with merits of low-cost, long-lasting, synthesis feasibility, exhibiting a high UL (1.06 V). Our proposed strategy comes up with a new linear scaling relationship of ΔG*OOH =ΔG*OH +2.84 eV. This approach offers a great possibility for the rational design of efficient catalysts for ORR and other chemical reactions.
Collapse
Affiliation(s)
- Li Yang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden, 01328, Germany
- Theoretical Chemistry, Technische Universität Dresden, Mommsenstr. 13, Dresden, 01062, Germany
| | - Yue Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Yan Huang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Linjie Deng
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Xiyu Li
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Jun Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
6
|
Qin Z, Wang Z, Li X, Cai Q, Li F, Zhao J. N-Doped CrS 2 Monolayer as a Highly-Efficient Catalyst for Oxygen Reduction Reaction: A Computational Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3012. [PMID: 36080047 PMCID: PMC9458212 DOI: 10.3390/nano12173012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Searching for low-cost and highly-efficient oxygen reduction reaction (ORR) catalysts is crucial to the large-scale application of fuel cells. Herein, by means of density functional theory (DFT) computations, we proposed a new class of ORR catalysts by doping the CrS2 monolayer with non-metal atoms (X@CrS2, X = B, C, N, O, Si, P, Cl, As, Se, and Br). Our results revealed that most of the X@CrS2 candidates exhibit negative formation energy and large binding energy, thus ensuring their high stability and offering great promise for experimental synthesis. Moreover, based on the computed free energy profiles, we predicted that N@CrS2 exhibits the best ORR catalytic activity among all considered candidates due to its lowest overpotential (0.41 V), which is even lower than that of the state-of-the-art Pt catalyst (0.45 V). Remarkably, the excellent catalytic performance of N@CrS2 for ORR can be ascribed to its optimal binding strength with the oxygenated intermediates, according to the computed linear scaling relationships and volcano plot, which can be well verified by the analysis of the p-band center as well as the charge transfer between oxygenated species and catalysts. Therefore, by carefully modulating the incorporated non-metal dopants, the CrS2 monolayer can be utilized as a promising ORR catalyst, which may offer a new strategy to further develop eligible electrocatalysts in fuel cells.
Collapse
Affiliation(s)
- Zengming Qin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, No. 1, Shida Street, Harbin 150025, China
| | - Zhongxu Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, No. 1, Shida Street, Harbin 150025, China
| | - Xiaofeng Li
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Qinghai Cai
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Fengyu Li
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Jingxiang Zhao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, No. 1, Shida Street, Harbin 150025, China
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| |
Collapse
|