1
|
Adisasmito S, Khoiruddin K, Sutrisna PD, Wenten IG, Siagian UWR. Bipolar Membrane Seawater Splitting for Hydrogen Production: A Review. ACS OMEGA 2024; 9:14704-14727. [PMID: 38585051 PMCID: PMC10993265 DOI: 10.1021/acsomega.3c09205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
The growing demand for clean energy has spurred the quest for sustainable alternatives to fossil fuels. Hydrogen has emerged as a promising candidate with its exceptional heating value and zero emissions upon combustion. However, conventional hydrogen production methods contribute to CO2 emissions, necessitating environmentally friendly alternatives. With its vast potential, seawater has garnered attention as a valuable resource for hydrogen production, especially in arid coastal regions with surplus renewable energy. Direct seawater electrolysis presents a viable option, although it faces challenges such as corrosion, competing reactions, and the presence of various impurities. To enhance the seawater electrolysis efficiency and overcome these challenges, researchers have turned to bipolar membranes (BPMs). These membranes create two distinct pH environments and selectively facilitate water dissociation by allowing the passage of protons and hydroxide ions, while acting as a barrier to cations and anions. Moreover, the presence of catalysts at the BPM junction or interface can further accelerate water dissociation. Alongside the thermodynamic potential, the efficiency of the system is significantly influenced by the water dissociation potential of BPMs. By exploiting these unique properties, BPMs offer a promising solution to improve the overall efficiency of seawater electrolysis processes. This paper reviews BPM electrolysis, including the water dissociation mechanism, recent advancements in BPM synthesis, and the challenges encountered in seawater electrolysis. Furthermore, it explores promising strategies to optimize the water dissociation reaction in BPMs, paving the way for sustainable hydrogen production from seawater.
Collapse
Affiliation(s)
- Sanggono Adisasmito
- Department
of Chemical Engineering, Institut Teknologi
Bandung (ITB), Jalan
Ganesa No. 10, Bandung 40132, Indonesia
| | - Khoiruddin Khoiruddin
- Department
of Chemical Engineering, Institut Teknologi
Bandung (ITB), Jalan
Ganesa No. 10, Bandung 40132, Indonesia
| | - Putu D. Sutrisna
- Department
of Chemical Engineering, Universitas Surabaya
(UBAYA), Jalan Raya Kalirungkut (Tenggilis), Surabaya 60293, Indonesia
| | - I Gede Wenten
- Department
of Chemical Engineering, Institut Teknologi
Bandung (ITB), Jalan
Ganesa No. 10, Bandung 40132, Indonesia
| | - Utjok W. R. Siagian
- Department
of Petroleum Engineering, Institut Teknologi
Bandung (ITB), Jalan Ganesa No. 10, Bandung 40132, Indonesia
| |
Collapse
|
2
|
Zhang F, Zhou J, Chen X, Zhao S, Zhao Y, Tang Y, Tian Z, Yang Q, Slavcheva E, Lin Y, Zhang Q. The Recent Progresses of Electrodes and Electrolysers for Seawater Electrolysis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:239. [PMID: 38334510 PMCID: PMC10856650 DOI: 10.3390/nano14030239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
The utilization of renewable energy for hydrogen production presents a promising pathway towards achieving carbon neutrality in energy consumption. Water electrolysis, utilizing pure water, has proven to be a robust technology for clean hydrogen production. Recently, seawater electrolysis has emerged as an attractive alternative due to the limitations of deep-sea regions imposed by the transmission capacity of long-distance undersea cables. However, seawater electrolysis faces several challenges, including the slow kinetics of the oxygen evolution reaction (OER), the competing chlorine evolution reaction (CER) processes, electrode degradation caused by chloride ions, and the formation of precipitates on the cathode. The electrode and catalyst materials are corroded by the Cl- under long-term operations. Numerous efforts have been made to address these issues arising from impurities in the seawater. This review focuses on recent progress in developing high-performance electrodes and electrolyser designs for efficient seawater electrolysis. Its aim is to provide a systematic and insightful introduction and discussion on seawater electrolysers and electrodes with the hope of promoting the utilization of offshore renewable energy sources through seawater electrolysis.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Far-Shore Wind Power Technology of Zhejiang Province, Hangzhou 311122, China; (F.Z.); (X.C.); (S.Z.)
- Key Laboratory of Advanced Fuel Cells and Electrolysers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (Y.Z.); (Y.T.); (Z.T.); (Q.Y.)
- Renewable Energy Engineering Institute, Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China
| | - Junjie Zhou
- Key Laboratory of Advanced Fuel Cells and Electrolysers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (Y.Z.); (Y.T.); (Z.T.); (Q.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofeng Chen
- Key Laboratory of Far-Shore Wind Power Technology of Zhejiang Province, Hangzhou 311122, China; (F.Z.); (X.C.); (S.Z.)
- Renewable Energy Engineering Institute, Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China
| | - Shengxiao Zhao
- Key Laboratory of Far-Shore Wind Power Technology of Zhejiang Province, Hangzhou 311122, China; (F.Z.); (X.C.); (S.Z.)
- Renewable Energy Engineering Institute, Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China
| | - Yayun Zhao
- Key Laboratory of Advanced Fuel Cells and Electrolysers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (Y.Z.); (Y.T.); (Z.T.); (Q.Y.)
| | - Yulong Tang
- Key Laboratory of Advanced Fuel Cells and Electrolysers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (Y.Z.); (Y.T.); (Z.T.); (Q.Y.)
| | - Ziqi Tian
- Key Laboratory of Advanced Fuel Cells and Electrolysers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (Y.Z.); (Y.T.); (Z.T.); (Q.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qihao Yang
- Key Laboratory of Advanced Fuel Cells and Electrolysers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (Y.Z.); (Y.T.); (Z.T.); (Q.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Qianwan Institute of CNITECH, Ningbo 315201, China
| | - Evelina Slavcheva
- Institute of Electrochemistry and Energy Systems of Bulgaria Academic Science (IEES), Akad. G. Bonchev 10, 1113 Sofia, Bulgaria;
| | - Yichao Lin
- Key Laboratory of Advanced Fuel Cells and Electrolysers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (Y.Z.); (Y.T.); (Z.T.); (Q.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuju Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolysers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (Y.Z.); (Y.T.); (Z.T.); (Q.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Yu Z, Liu L. Recent Advances in Hybrid Seawater Electrolysis for Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308647. [PMID: 38143285 DOI: 10.1002/adma.202308647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/04/2023] [Indexed: 12/26/2023]
Abstract
Seawater electrolysis (SWE) is a promising and potentially cost-effective approach to hydrogen production, considering that seawater is vastly abundant and SWE is able to combine with offshore renewables producing green hydrogen. However, SWE has long been suffering from technical challenges including the high energy demand and interference of chlorine chemistry, leading electrolyzers to a low efficiency and short lifespan. In this context, hybrid SWE, operated by replacing the energy-demanding oxygen evolution reaction and interfering chlorine evolution reaction (CER) with a thermodynamically more favorable anodic oxidation reaction (AOR) or by designing innovative electrolyzer cells, has recently emerged as a better alternative, which not only allows SWE to occur in a safe and energy-saving manner without the notorious CER, but also enables co-production of value-added chemicals or elimination of environmental pollutants. This review provides a first account of recent advances in hybrid SWE for hydrogen production. The substitutional AOR of various small molecules or redox mediators, in couple with hydrogen evolution from seawater, is comprehensively summarized. Moreover, how the electrolyzer cell design helps in hybrid SWE is briefly discussed. Last, the current challenges and future outlook about the development of the hybrid SWE technology are outlined.
Collapse
Affiliation(s)
- Zhipeng Yu
- Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan, 523808, P. R. China
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, Braga, 4715-330, Portugal
| | - Lifeng Liu
- Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan, 523808, P. R. China
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, Braga, 4715-330, Portugal
| |
Collapse
|
4
|
Chen M, Wu G, Du X, Zhang X. Design of polymetallic sulfide NiS 2@Co 4S 3@FeS as bifunctional catalyst for high efficiency seawater splitting. Dalton Trans 2023; 52:16943-16950. [PMID: 37929706 DOI: 10.1039/d3dt03233g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The shortage of freshwater resources in the world today has limited the development of water splitting, and our eyes have turned to the abundant seawater. The development of relatively low-toxicity and high-efficiency catalysts is the most important area in seawater electrolysis. In this paper, the preparation of NiS2@Co4S3@FeS via a hydrothermal method on nickel foam has been studied for the first time. In the process of vulcanization, Fe will first generate FeS by virtue of its high affinity for vulcanization. Once Fe is vulcanized, the residual sulfur will be used to generate NiS2, while the vulcanization of Co requires a higher sulfur concentration and reaction temperature; thus, Co4S3 will be generated last. NiS2@Co4S3@FeS is confirmed to have excellent hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalytic properties in alkaline seawater. Its unique structure allows it to expose more reaction centres, and the synergies between the multiple metals optimize the charge distribution of the material and accelerate the OER and HER kinetics. NiS2@Co4S3@FeS requires overpotentials of only 122 mV and 68 mV for the OER and HER when reaching 10 mA cm-2, which is superior to most catalysts reported to date for seawater electrolysis, and the material displays acceptable stability. In an electrolytic cell composed of both positive and negative electrodes, when the current density is 10 mA cm-2, the NiS2@Co4S3@FeS material displays a low overpotential of only 357 mV for seawater splitting. Density functional theory shows that the FeS electrode has the optimum Gibbs free energy of H to accelerate reaction kinetics, and the synergistic catalysis of the NiS2, Co4S3 and FeS materials promotes the hydrogen production activity of the NiS2@Co4S3@FeS electrode. This work proposes a novel idea for designing environmentally friendly seawater splitting catalysts.
Collapse
Affiliation(s)
- Mingshuai Chen
- School of Chemistry and Chemical Engineering, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China.
| | - Guangping Wu
- School of Chemistry and Chemical Engineering, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China.
| | - Xiaoqiang Du
- School of Chemistry and Chemical Engineering, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China.
| | - Xiaoshuang Zhang
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
5
|
Liu Q, Yan Z, Gao J, Fan H, Li M, Wang E. Ion sieving membrane for direct seawater anti-precipitation hydrogen evolution reaction electrode. Chem Sci 2023; 14:11830-11839. [PMID: 37920330 PMCID: PMC10619616 DOI: 10.1039/d3sc04532c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
In seawater, severe hydroxide-based precipitation on the hydrogen evolution reaction (HER) electrode surface is still a major stumbling block for direct seawater electrolysis. Here, we design a direct seawater HER electrode with excellent anti-precipitation performance based on an Ni(OH)2 nanofiltration membrane in situ grown on nickel foam (NF) at room temperature. The positively charged Ni(OH)2 membrane with nanometer-scale cracks realises an ion sieving function, which apparently hinders the transfer of Mg2+/Ca2+ ions to suppress precipitation, while rapidly transporting OH- and H2O to ensure HER mass transfer. Therefore, the Ni(OH)2-membrane-decorated seawater HER electrode reduces precipitation by about 98.3% and exhibits high activity and stability. Moreover, in the application of a direct seawater electrolyser and magnesium seawater battery, the Ni(OH)2 membrane-decorated electrode also shows low precipitation and high stability. This work highlights a potential strategy to solve HER electrode precipitation in seawater via an ingenious electrode structure design.
Collapse
Affiliation(s)
- Qianfeng Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Zhao Yan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Jianxin Gao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Hefei Fan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Min Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Erdong Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
6
|
Han JH, Bae J, Lim J, Jwa E, Nam JY, Hwang KS, Jeong N, Choi J, Kim H, Jeung YC. Acidification-based direct electrolysis of treated wastewater for hydrogen production and water reuse. Heliyon 2023; 9:e20629. [PMID: 37860540 PMCID: PMC10582299 DOI: 10.1016/j.heliyon.2023.e20629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
This report describes the direct electrolysis of treated wastewater (as a catholyte) to produce hydrogen and potentially reuse the water. To suppress the negative shift of the cathodic potential due to an increase in pH by the hydrogen evolution reaction (HER), the treated wastewater is acidified using the synergetic effect of protons generated from the bipolar membrane and inorganic precipitation occurred at the surface of the cathode during the HER. Natural seawater, as an accessible source for Mg2+ ions, was added to the treated wastewater because the concentration of Mg2+ ions contained in the original wastewater was too low for acidification to occur. The mixture of treated wastewater with seawater was acidified to pH 3, allowing the initial cathode potential to be maintained for more than 100 h. The amount of inorganic precipitates formed on the cathode surface is greater than that in the control case (adding 0.5 M NaCl instead of seawater) but does not adversely affect the cathodic potential and Faradaic efficiency for H2 production. Additionally, it was confirmed that less organic matter was adsorbed to the inorganic deposits under acidic conditions. These indicate that acidification plays an important role in improving the performance and stability of low-grade water electrolysis. Considering that the treated wastewater is discharged near the ocean, acidification-based electrolysis of the effluent with seawater can be a water reuse technology for green hydrogen production, enhancing water resilience and contributing to the circular economy of water resources.
Collapse
Affiliation(s)
- Ji-Hyung Han
- Jeju Global Research Centre, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Republic of Korea
| | - Jeongwook Bae
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Joohyun Lim
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Eunjin Jwa
- Jeju Global Research Centre, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Republic of Korea
| | - Joo-Youn Nam
- Jeju Global Research Centre, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Republic of Korea
| | - Kyo Sik Hwang
- Jeju Global Research Centre, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Republic of Korea
| | - Namjo Jeong
- Jeju Global Research Centre, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Republic of Korea
| | - Jiyeon Choi
- Jeju Global Research Centre, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Republic of Korea
| | - Hanki Kim
- Jeju Global Research Centre, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Republic of Korea
| | - Youn-Cheul Jeung
- Jeju Global Research Centre, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Republic of Korea
| |
Collapse
|