1
|
Langer M, Mengele AK, Müller R, Wetzel JC, Mayer J, Rau S, Streb C. In situ formation of an active oxygen evolution catalyst via photodegradation of [Ru(bpy) 3] 2. Dalton Trans 2025; 54:4861-4865. [PMID: 40052795 DOI: 10.1039/d5dt00233h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
[Ru(bpy)3]2+ is a widely used molecular photosensitizer (PS) for light-driven reactions in combination with separate catalysts, although the PS alone is known to promote water oxidation under aqueous conditions as well. In contrast, this behavior has not been reported for organic and aqueous solvent mixtures before. Here, we provide mechanistic insights into the role of [Ru(bpy)3]2+ as PS and oxygen evolution catalyst precursor in organic media.
Collapse
Affiliation(s)
- Marcel Langer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Alexander K Mengele
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Riccarda Müller
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Julius C Wetzel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Judith Mayer
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sven Rau
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Carsten Streb
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
2
|
Çeper T, Langer M, Vashistha N, Dietzek-Ivanšić B, Streb C, Rau S, Schacher FH. Poly(dehydroalanine)-Based Hydrogels as Efficient Soft Matter Matrices for Light-Driven Catalysis. Macromol Rapid Commun 2024; 45:e2300448. [PMID: 38232973 DOI: 10.1002/marc.202300448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/27/2023] [Indexed: 01/19/2024]
Abstract
Soft matter integration of photosensitizers and catalysts provides promising solutions to developing sustainable materials for energy conversion. Particularly, hydrogels bring unique benefits, such as spatial control and 3D-accessibility of molecular units, as well as recyclability. Herein, the preparation of polyampholyte hydrogels based on poly(dehydroalanine) (PDha) is reported. Chemically crosslinked PDha with bis-epoxy poly(ethylene glycol) leads to a transparent, self-supporting hydrogel. Due to the ionizable groups on PDha, this 3D polymeric matrix can be anionic, cationic, or zwitterionic depending on the pH value, and its high density of dynamic charges has a potential for electrostatic attachment of charged molecules. The integration of the cationic molecular photosensitizer [Ru(bpy)3 ]2+ (bpy = 2,2'-bipyridine) is realized, which is a reversible process controlled by pH, leading to light harvesting hydrogels. They are further combined with either a thiomolybdate catalyst ([Mo3 S13 ]2- ) for hydrogen evolution reaction (HER) or a cobalt polyoxometalate catalyst (Co4 POM = [Co4 (H2 O)2 (PW9 O34 )2 ]10- ) for oxygen evolution reaction (OER). Under the optimized condition, the resulting hydrogels show catalytic activity in both cases upon visible light irradiation. In the case of OER, higher photosensitizer stability is observed compared to homogeneous systems, as the polymer environment seems to influence decomposition pathways.
Collapse
Affiliation(s)
- Tolga Çeper
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, D-07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Marcel Langer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Nikita Vashistha
- Institute of Physical Chemistry, Friedrich-Schiller-University Jena, Helmholtzweg 4, D-07743, Jena, Germany
- Leibniz Institute of Photonic Technology Jena, Department of Functional Interfaces, Albert Einstein Allee 9, D-07745, Jena, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry, Friedrich-Schiller-University Jena, Helmholtzweg 4, D-07743, Jena, Germany
- Leibniz Institute of Photonic Technology Jena, Department of Functional Interfaces, Albert Einstein Allee 9, D-07745, Jena, Germany
| | - Carsten Streb
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Sven Rau
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, D-07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| |
Collapse
|
3
|
Kruczała K, Neubert S, Dhaka K, Mitoraj D, Jánošíková P, Adler C, Krivtsov I, Patzsch J, Bloh J, Biskupek J, Kaiser U, Hocking RK, Caspary Toroker M, Beranek R. Enhancing Photocatalysis: Understanding the Mechanistic Diversity in Photocatalysts Modified with Single-Atom Catalytic Sites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303571. [PMID: 37888857 PMCID: PMC10724417 DOI: 10.1002/advs.202303571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/16/2023] [Indexed: 10/28/2023]
Abstract
Surface modification of heterogeneous photocatalysts with single-atom catalysts (SACs) is an attractive approach for achieving enhanced photocatalytic performance. However, there is limited knowledge of the mechanism of photocatalytic enhancement in SAC-modified photocatalysts, which makes the rational design of high-performance SAC-based photocatalysts challenging. Herein, a series of photocatalysts for the aerobic degradation of pollutants based on anatase TiO2 modified with various low-cost, non-noble SACs (vanadate, Cu, and Fe ions) is reported. The most active SAC-modified photocatalysts outperform TiO2 modified with the corresponding metal oxide nanoparticles and state-of-the-art benchmark photocatalysts such as platinized TiO2 and commercial P25 powders. A combination of in situ electron paramagnetic resonance spectroscopy and theoretical calculations reveal that the best-performing photocatalysts modified with Cu(II) and vanadate SACs exhibit significant differences in the mechanism of activity enhancement, particularly with respect to the rate of oxygen reduction. The superior performance of vanadate SAC-modified TiO2 is found to be related to the shallow character of the SAC-induced intragap states, which allows for both the effective extraction of photogenerated electrons and fast catalytic turnover in the reduction of dioxygen, which translates directly into diminished recombination. These results provide essential guidelines for developing efficient SAC-based photocatalysts.
Collapse
Affiliation(s)
- Krzysztof Kruczała
- Faculty of ChemistryJagiellonian University in KrakówGronostajowa 2/C1‐21Krakow30–387Poland
| | - Susann Neubert
- Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstr. 15044780BochumGermany
| | - Kapil Dhaka
- Department of Materials Science and EngineeringTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Dariusz Mitoraj
- Institute of ElectrochemistryUlm UniversityAlbert‐Einstein‐Allee 4789069UlmGermany
| | - Petra Jánošíková
- Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstr. 15044780BochumGermany
| | - Christiane Adler
- Institute of ElectrochemistryUlm UniversityAlbert‐Einstein‐Allee 4789069UlmGermany
| | - Igor Krivtsov
- Institute of ElectrochemistryUlm UniversityAlbert‐Einstein‐Allee 4789069UlmGermany
- Department of Chemical and Environmental EngineeringUniversity of OviedoOviedo33006Spain
| | - Julia Patzsch
- Chemical Technology GroupDECHEMA Research InstituteTheodor‐Heuss‐Allee 2560486Frankfurt am MainGermany
| | - Jonathan Bloh
- Chemical Technology GroupDECHEMA Research InstituteTheodor‐Heuss‐Allee 2560486Frankfurt am MainGermany
| | - Johannes Biskupek
- Central Facility of Electron MicroscopyElectron Microscopy Group of Material ScienceUniversity of UlmD‐89081UlmGermany
| | - Ute Kaiser
- Central Facility of Electron MicroscopyElectron Microscopy Group of Material ScienceUniversity of UlmD‐89081UlmGermany
| | - Rosalie K. Hocking
- Department of Chemistry and BiotechnologyARC Training Centre for Surface Engineering for Advanced Material SEAMSwinburne University of TechnologyHawthornVIC3122Australia
| | - Maytal Caspary Toroker
- Department of Materials Science and EngineeringTechnion – Israel Institute of TechnologyHaifa3200003Israel
- The Nancy and Stephen Grand Technion Energy ProgramTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Radim Beranek
- Institute of ElectrochemistryUlm UniversityAlbert‐Einstein‐Allee 4789069UlmGermany
| |
Collapse
|
4
|
Klingler S, Bagemihl B, Mengele AK, Kaufhold S, Myllyperkiö P, Ahokas J, Pettersson M, Rau S, Mizaikoff B. Rationalizing In Situ Active Repair in Hydrogen Evolution Photocatalysis via Non-Invasive Raman Spectroscopy. Angew Chem Int Ed Engl 2023; 62:e202306287. [PMID: 37519152 DOI: 10.1002/anie.202306287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Currently, most photosensitizers and catalysts used in the field of artificial photosynthesis are still based on rare earth metals and should thus be utilized as efficiently and economically as possible. While repair of an inactivated catalyst is a potential mitigation strategy, this remains a challenge. State-of-the-art methods are crucial for characterizing reaction products during photocatalysis and repair, and are currently based on invasive analysis techniques limiting real-time access to the involved mechanisms. Herein, we use an innovative in situ technique for detecting both initially evolved hydrogen and after active repair via advanced non-invasive rotational Raman spectroscopy. This facilitates unprecedently accurate monitoring of gaseous reaction products and insight into the mechanism of active repair during light-driven catalysis enabling the identification of relevant mechanistic details along with innovative repair strategies.
Collapse
Affiliation(s)
- Sarah Klingler
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Benedikt Bagemihl
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Alexander K Mengele
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Simon Kaufhold
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Pasi Myllyperkiö
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, 40014 University of, Jyväskylä, Finland
| | - Jussi Ahokas
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, 40014 University of, Jyväskylä, Finland
- Financial and Facility Services, University of Jyväskylä, 40014 University of, Jyväskylä, Finland
| | - Mika Pettersson
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, 40014 University of, Jyväskylä, Finland
| | - Sven Rau
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Hahn-Schickard, Sedanstraße 4, 89081, Ulm, Germany
| |
Collapse
|
5
|
Ziegenbalg D, Pannwitz A, Rau S, Dietzek‐Ivanšić B, Streb C. Comparative Evaluation of Light-Driven Catalysis: A Framework for Standardized Reporting of Data. Angew Chem Int Ed Engl 2022; 61:e202114106. [PMID: 35698245 PMCID: PMC9401044 DOI: 10.1002/anie.202114106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 01/05/2023]
Abstract
Light-driven homogeneous and heterogeneous catalysis require a complex interplay between light absorption, charge separation, charge transfer, and catalytic turnover. Optical and irradiation parameters as well as reaction engineering aspects play major roles in controlling catalytic performance. This multitude of factors makes it difficult to objectively compare light-driven catalysts and provide an unbiased performance assessment. This Scientific Perspective highlights the importance of collecting and reporting experimental data in homogeneous and heterogeneous light-driven catalysis. A critical analysis of the benefits and limitations of the commonly used experimental indicators is provided. Data collection and reporting according to FAIR principles is discussed in the context of future automated data analysis. The authors propose a minimum dataset as a basis for unified collecting and reporting of experimental data in homogeneous and heterogeneous light-driven catalysis. The community is encouraged to support the future development of this parameter list through an open online repository.
Collapse
Affiliation(s)
- Dirk Ziegenbalg
- Institute of Chemical EngineeringUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Andrea Pannwitz
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Sven Rau
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Benjamin Dietzek‐Ivanšić
- Institute of Physical Chemistry and Center of Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Department Functional InterfacesLeibniz Institute of Photonic Technology Jena (IPHT)Albert-Einstein-Straße 907745JenaGermany
| | - Carsten Streb
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10-1455128MainzGermany
| |
Collapse
|
6
|
Ziegenbalg D, Pannwitz A, Rau S, Dietzek‐Ivanšić B, Streb C. Vergleichende Evaluierung lichtgetriebener Katalyse: Ein Rahmenkonzept für das standardisierte Berichten von Daten**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dirk Ziegenbalg
- Institut für Chemieingenieurwesen Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Andrea Pannwitz
- Institut für Anorganische Chemie I Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Sven Rau
- Institut für Anorganische Chemie I Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Benjamin Dietzek‐Ivanšić
- Institut für Physikalische Chemie und Center of Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich-Schiller-Universität Jena Helmholtzweg 4 07743 Jena Deutschland
- Department Funktionale Grenzflächen Leibniz-Institut für Photonische Technologien Jena (IPHT) Albert-Einstein-Straße 9 07745 Jena Deutschland
| | - Carsten Streb
- Institut für Anorganische Chemie I Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|