1
|
Vergara-Arenas B, Nicholls RL, Negrón-Silva GE, Lomas-Romero L, Morales-Sern JA, Nguyen BN. Effects of Mixed Metal Oxide Catalysts on the Synthesis of Cyclic Carbonates from Epoxides under Atmospheric CO 2 Pressure. ACS OMEGA 2025; 10:673-682. [PMID: 39829508 PMCID: PMC11740258 DOI: 10.1021/acsomega.4c07538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
One use of CO2 as a starting material in organic transformations is in the synthesis of cyclic carbonates and polycarbonates. Due to the low reactivity of CO2, this transformation must be carried out in the presence of an efficient catalyst. Although several catalytic systems have been developed in the past decade, reducing the CO2 pressure at which the reaction is carried out remains one of the main challenges of the process. In this context, in the present work, we describe the catalytic activity of mixed metal oxides in the synthesis of cyclic carbonates from CO2 (1 atm) and epoxides at 70 °C. Using these materials as catalysts represents significant benefits since they are very stable, cost-effective, and can be reused in several reaction cycles.
Collapse
Affiliation(s)
- Blanca
Ivonne Vergara-Arenas
- Departamento
de Química, Universidad Autónoma
Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Ciudad de
México C. P. 09340, México
| | - Rachel L. Nicholls
- Institute
of Process Research and Development, School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Guillermo E. Negrón-Silva
- Departamento
de Ciencias Básicas, Universidad
Autónoma Metropolitana-Azcapotzalco, Av. San Pablo No. 180, Ciudad
de México C. P. 02200, México
| | - Leticia Lomas-Romero
- Departamento
de Química, Universidad Autónoma
Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Ciudad de
México C. P. 09340, México
| | - José Antonio Morales-Sern
- Centro
de Investigaciones Científicas, Instituto de Química
Aplicada, Universidad del Papaloapan, Tuxtepec, Oaxaca 68301, México
| | - Bao N. Nguyen
- Institute
of Process Research and Development, School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| |
Collapse
|
2
|
Natongchai W, Crespy D, D'Elia V. CO 2 fixation: cycloaddition of CO 2 to epoxides using practical metal-free recyclable catalysts. Chem Commun (Camb) 2025; 61:419-440. [PMID: 39635881 DOI: 10.1039/d4cc05291a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The conversion of CO2 into valuable chemicals is a crucial field of research. Cyclic organic carbonates have attracted great interest because they can be prepared under mild conditions and because of their structural versatility which enables a large variety of applications. Therefore, there is a need for potent and yet practical catalysts for the cycloaddition of CO2 to cyclic carbonates that are able to combine availability, low cost and an adequate performance. We review here several recyclable catalytic systems that are readily available, easy to prepare, and inexpensive with an eye to the future development of more efficient practical catalysts through the provided guidelines.
Collapse
Affiliation(s)
- Wuttichai Natongchai
- Department of Materials Science and Engineering, VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Vidyasirimedhi Institute of Science and Technology, (VISTEC), Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Wangchan, Rayong 21210, Thailand
| | - Valerio D'Elia
- Department of Materials Science and Engineering, VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Vidyasirimedhi Institute of Science and Technology, (VISTEC), Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
3
|
Tangyen N, Natongchai W, D’Elia V. Catalytic Strategies for the Cycloaddition of CO 2 to Epoxides in Aqueous Media to Enhance the Activity and Recyclability of Molecular Organocatalysts. Molecules 2024; 29:2307. [PMID: 38792168 PMCID: PMC11124216 DOI: 10.3390/molecules29102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
The cycloaddition of CO2 to epoxides to afford versatile and useful cyclic carbonate compounds is a highly investigated method for the nonreductive upcycling of CO2. One of the main focuses of the current research in this area is the discovery of readily available, sustainable, and inexpensive catalysts, and of catalytic methodologies that allow their seamless solvent-free recycling. Water, often regarded as an undesirable pollutant in the cycloaddition process, is progressively emerging as a helpful reaction component. On the one hand, it serves as an inexpensive hydrogen bond donor (HBD) to enhance the performance of ionic compounds; on the other hand, aqueous media allow the development of diverse catalytic protocols that can boost catalytic performance or ease the recycling of molecular catalysts. An overview of the advances in the use of aqueous and biphasic aqueous systems for the cycloaddition of CO2 to epoxides is provided in this work along with recommendations for possible future developments.
Collapse
Affiliation(s)
| | | | - Valerio D’Elia
- VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Wangchan, Thailand; (N.T.); (W.N.)
| |
Collapse
|
4
|
Muzyka C, Renson S, Grignard B, Detrembleur C, Monbaliu JCM. Intensified Continuous Flow Process for the Scalable Production of Bio-Based Glycerol Carbonate. Angew Chem Int Ed Engl 2024; 63:e202319060. [PMID: 38197641 DOI: 10.1002/anie.202319060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/11/2024]
Abstract
A subtle combination of fundamental and applied organic chemistry toward process intensification is demonstrated for the large-scale production of bio-based glycerol carbonate under flow conditions. The direct carbonation of bio-based glycidol with CO2 is successfully carried out under intensified flow conditions, with Barton's base as a potent homogeneous organocatalyst. Process metrics for the CO2 coupling step (for the upstream production, output: 3.6 kg day-1 , Space Time Yield (STY): 2.7 kg h-1 L-1 , Environmental factor (E-factor): 4.7) outclass previous reports. High conversion and selectivity are achieved in less than 30 s of residence time at pilot scale with a stoichiometric amount of CO2 . Supporting DFT computations reveal the unique features of the mechanism in presence of Brønsted bases.
Collapse
Affiliation(s)
- Claire Muzyka
- Center for Integrated Technology and Organic Synthesis (CiTOS), MolSys Research Unit, University of Liège, Allée du Six Août 13, 4000, Liège (Sart Tilman), Belgium
| | - Sébastien Renson
- Center for Integrated Technology and Organic Synthesis (CiTOS), MolSys Research Unit, University of Liège, Allée du Six Août 13, 4000, Liège (Sart Tilman), Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Allée du Six Août 13, 4000, Liège (Sart Tilman), Belgium
- Federation of Researchers in Innovative Technologies for CO2 Transformation (FRITCO2T technology platform), University of Liege, Allée de la Chimie, B6a, 4000, Liège, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Allée du Six Août 13, 4000, Liège (Sart Tilman), Belgium
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis (CiTOS), MolSys Research Unit, University of Liège, Allée du Six Août 13, 4000, Liège (Sart Tilman), Belgium
| |
Collapse
|
5
|
Paliwal KS, Sarkar D, Mitra A, Mahalingam V. Chitosan-Derived N-Doped Carbon for Light-Mediated Carbon Dioxide Fixation into Epoxides. Chempluschem 2023; 88:e202300448. [PMID: 37688428 DOI: 10.1002/cplu.202300448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/10/2023]
Abstract
A series of calcined Chitosan (CS) photothermal catalysts are prepared by heating the biopolymer at different temperatures. The photothermal conversion (light to heat) ability of these calcined CS materials is evaluated by measuring the temperature change with respect to time and lamp power. The material prepared at 300 °C (Cal-CS-300) shows excellent photothermal conversion ability which is explored for the CO2 cycloaddition reaction with epoxides to produce cyclic carbonates under mild reaction parameters (1 atm CO2 pressure, 25 °C). The study reveals the importance of defects present in the material on both photothermal conversion and CO2 fixation efficiency. Under optimized reaction conditions, Cal-CS-300 is able to convert a range of epoxides into their respective cyclic carbonates (>97 % selectivity) and retains its catalytic activity (~86 %) for 5 cycles of catalysis without losing its chemical integrity. The use of ubiquitously available biopolymer together with light makes this approach sustainable for preparing value added chemicals.
Collapse
Affiliation(s)
- Khushboo S Paliwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Debashrita Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Antarip Mitra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| |
Collapse
|
6
|
Fierro F, Lamparelli DH, Genga A, Cucciniello R, Capacchione C. I-LDH as a heterogeneous bifunctional catalyst for the conversion of CO2 into cyclic organic carbonates. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
7
|
Kessaratikoon T, Theerathanagorn T, Crespy D, D'Elia V. Organocatalytic Polymers from Affordable and Readily Available Building Blocks for the Cycloaddition of CO 2 to Epoxides. J Org Chem 2023; 88:4894-4924. [PMID: 36692489 DOI: 10.1021/acs.joc.2c02447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The catalytic cycloaddition of CO2 to epoxides to afford cyclic carbonates as useful monomers, intermediates, solvents, and additives is a continuously growing field of investigation as a way to carry out the atom-economic conversion of CO2 to value-added products. Metal-free organocatalytic compounds are attractive systems among various catalysts for such transformations because they are inexpensive, nontoxic, and readily available. Herein, we highlight and discuss key advances in the development of polymer-based organocatalytic materials that match these requirements of affordability and availability by considering their synthetic routes, the monomers, and the supports employed. The discussion is organized according to the number (monofunctional versus bifunctional materials) and type of catalytically active moieties, including both halide-based and halide-free systems. Two general synthetic approaches are identified based on the postsynthetic functionalization of polymeric supports or the copolymerization of monomers bearing catalytically active moieties. After a review of the material syntheses and catalytic activities, the chemical and structural features affecting catalytic performance are discussed. Based on such analysis, some strategies for the future design of affordable and readily available polymer-based organocatalysts with enhanced catalytic activity under mild conditions are considered.
Collapse
Affiliation(s)
- Tanika Kessaratikoon
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Tharinee Theerathanagorn
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Daniel Crespy
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Valerio D'Elia
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| |
Collapse
|