1
|
Ji X, Wang Z, Fang Z, Wei Z, Wang J. Unlocking the Effects of the RuCo Alloy Ratio on Alkaline Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63560-63568. [PMID: 39527712 DOI: 10.1021/acsami.4c13175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Understanding the interaction between Ru and Co components and the alloy ratio effects on the catalytic process is a technical challenge that requires a precise alloy structural design. This study proposes an effective stepwise annealing method for the construction of RuCo alloy-based electrocatalysts with varied Ru:Co ratios. Interestingly, as the concentration of Co in the first-step pyrolysis products increases, the secondary pyrolysis results in RuCo composites undergoing a transition from incomplete alloying to alloy ratios of 1:1, 1:2, and 1:8. When the alloy ratio is 1:1, more Run+ and Co0 transform into Ru0 and Co2/3+. In 1 M KOH, RuCo-0.6/NC demonstrates outstanding catalytic performance and durability even superior to that of commercial Pt/C, delivering a lower overpotential of 16 mV at 10 mA cm-2. DFT calculations reveal that the fast H2O dissociation and moderate H adsorption guarantee the superior activity of RuCo.
Collapse
Affiliation(s)
- Xing Ji
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhenzhen Wang
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zefeng Fang
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhongzhe Wei
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jing Wang
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
2
|
Li W, Liu K, Feng S, Xiao Y, Zhang L, Mao J, Liu Q, Liu X, Luo J, Han L. Well-defined Ni 3N nanoparticles armored in hollow carbon nanotube shell for high-efficiency bifunctional hydrogen electrocatalysis. J Colloid Interface Sci 2024; 655:726-735. [PMID: 37976746 DOI: 10.1016/j.jcis.2023.11.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Alkaline H2-O2 fuel cells and water electrolysis are crucial for hydrogen energy recycling. However, the sluggish kinetics of the hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) in an alkaline medium pose significant obstacles. Thus, it is imperative but challenging to develop highly efficient and stable non-precious metal electrocatalysts for alkaline HOR and HER. Here, we present the intriguing synthesis of well-defined Ni3N nanoparticles armored within an N-doped hollow carbon nanotube shell (Ni3N@NC) via the conversion of a hydrogen-bonded organic framework (HOF) to metal-organic framework (MOF), followed by high-temperature pyrolysis. As-developed Ni3N@NC demonstrates exceptional bifunctionality in alkaline HOR/HER electrocatalysis, with a high HOR limiting current density of 2.67 mA cm-2 comparable to the benchmark 20 wt% Pt/C, while achieving a lead in overpotential of 145 mV and stronger CO-tolerance. Additionally, it achieves a low overpotential of 21 mV to attain a HER current density of 10 mA cm-2 with long-term stability up to 340 h, both exceeding those of Pt/C. Structural analyses and electrochemical studies reveal that the remarkable bifunctional hydrogen electrocatalytic performance of Ni3N@NC can be ascribed to the synergistic coupling among the well-dispersed small-sized Ni3N nanoparticles, chain-mail structure, and optimized electronic structure enabled by strong metal-support interaction. Furthermore, theoretical calculations indicate that the high-efficiency HOR/HER observed in Ni3N@NC is attributed to the strong OH- affinity, moderate H adsorption, and enhanced water formation/dissociation ability of the Ni3N active sites. This work underscores the significance of rational structural design in enhancing performance and inspires further development of advanced nanostructures for efficient hydrogen electrocatalysis.
Collapse
Affiliation(s)
- Wenbo Li
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004 Guangxi, China
| | - Kuo Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Shiqiang Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yi Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Linjie Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Jing Mao
- National Experimental Teaching Demonstration Center of Material Science and Engineering, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004 Guangxi, China.
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen 518110, China
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| |
Collapse
|
3
|
Sun W, Fang Y, Sun G, Dai C, Liu Y, Zhang J, Zhu Y, Wang J. Ruthenium-Manganese Solid Solution Oxide with Enhanced Performance for Acidic and Alkaline Oxygen Evolution Reaction. Chem Asian J 2023; 18:e202300440. [PMID: 37378545 DOI: 10.1002/asia.202300440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
Proton exchange membrane water electrolysers and alkaline exchange membrane water electrolysers for hydrogen production suffer from sluggish kinetics and the limited durability of the electrocatalyst toward oxygen evolution reaction (OER). Herein, a rutile Ru0.75 Mn0.25 O2-δ solid solution oxide featured with a hierarchical porous structure has been developed as an efficient OER electrocatalyst in both acidic and alkaline electrolyte. Specifically, compared with commercial RuO2 , the catalyst displays a superior reaction kinetics with small Tafel slope of 54.6 mV dec-1 in 0.5 M H2 SO4 , thus allowing a low overpotential of 237 and 327 mV to achieve the current density of 10 and 100 mA cm-2 , respectively, which is attributed to the enhanced electrochemically active surface area from the porous structure and the increased intrinsic activity owing to the regulated Ru>4+ proportion with Mn incorporation. Additionally, the sacrificial dissolution of Mn relieves the leaching of active Ru species, leading to the extended OER durability. Besides, the Ru0.75 Mn0.25 O2-δ catalyst also shows a highly improved OER performance in alkaline electrolyte, rendering it a versatile catalyst for water splitting.
Collapse
Affiliation(s)
- Wen Sun
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Ying Fang
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Gaoming Sun
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Congfu Dai
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yana Liu
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jiguang Zhang
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yunfeng Zhu
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jun Wang
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
4
|
Li Q, Luan X, Xiao Z, Xiao W, Xu G, Li Z, Wu Z, Wang L. Ultrafast Microwave Synthesis of Ru-Doped MoP with Abundant P Vacancies as the Electrocatalyst for Hydrogen Generation in a Wide pH Range. Inorg Chem 2023. [PMID: 37267518 DOI: 10.1021/acs.inorgchem.3c01299] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Molybdenum phosphide (MoP) has received increasing attention for the hydrogen evolution reaction (HER) due to its Pt-like electronic structure and high electrical conductivity. In this work, a flake-like Ru-doped MoP with phosphorus vacancy (Ru-MoP-PV) electrocatalyst is synthesized for the first time by a simple and rapid room-temperature microwave approach within 30 s. The created abundant phosphorus vacancies provide rich active sites and favor rapid electron transfer. The introduced Ru also enhances the catalytic activity of the synthesized electrocatalyst efficiently. Then, the designed Ru-MoP-PV possesses low overpotentials for HER with 79, 100, and 161 mV in 1.0 M KOH, 0.5 M H2SO4, and 1.0 M phosphate-buffered saline to obtain 10 mA cm-2. The Ru-MoP-PV and NiFe-layered double hydroxide are used as the cathode and the anode, respectively, to drive water splitting and just need a low cell voltage of 1.6 V to achieve 10 mA cm-2. This work provides a feasible way for the rapid production of metal phosphides for energy conversion and storage applications.
Collapse
Affiliation(s)
- Qichang Li
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Xueying Luan
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Zhenyu Xiao
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Weiping Xiao
- College of Science, Nanjing Forestry University, Nanjing 210037 Jiangsu, China
| | - Guangrui Xu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 Shandong, China
| | - Zhenjiang Li
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 Shandong, China
| | - Zexing Wu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|