1
|
Chen WQ, Foo JCL, Veksha A, Chan WP, Ge LY, Lisak G. Unveiling key impact parameters and mechanistic insights towards activated biochar performance for carbon dioxide reduction. BIORESOURCE TECHNOLOGY 2024; 411:131355. [PMID: 39191295 DOI: 10.1016/j.biortech.2024.131355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Chemically activated biochar is effective in supercapacitors and water splitting, but low conductivity hinders its application as a carbon support in carbon dioxide reduction reaction (CO2RR). Based on the observed CO2RR performance from potassium hydroxide (KOH)-activated biochar, increased microporosity was hypothesized to enhance the performance, leading to selection of potassium carbonate (K2CO3) for activation. K2CO3 activation at 600℃ increased microporosity significantly, yielding a total Faradaic efficiency of 72%, compared to 60% with KOH at 800℃. Further refinement of thermal ramping rate enriched micropore content, directly boosting FEC to 82%. Additionally, K2CO3's lower activation temperature could preserve hydroxyl groups to improve ethylene selectivity. These findings demonstrate that optimizing microporosity and surface chemistry is critical for designing activated biochar-based CO2RR electrocatalysts. Despite lower electrical conductivity of activated biochar, selecting the appropriate activating agents and conditions can make it a viable alternative to carbon black-based electrocatalysts.
Collapse
Affiliation(s)
- Wen Qian Chen
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore
| | - Jit Cyrus Loong Foo
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore
| | - Andrei Veksha
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore
| | - Wei-Ping Chan
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore
| | - Li Ya Ge
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
2
|
Yuan J, Zou J, Wu Z, Wang Z, Yang Z, Xu H. Bifunctional electrocatalytic reduction performance of nitrogen containing biomass based nanoreactors loaded with Ni nanoparticles for oxygen and carbon dioxide. NANOTECHNOLOGY 2024; 35:175402. [PMID: 37832530 DOI: 10.1088/1361-6528/ad0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
In the face of increasing energy demand, the approach of transformation that combines energy restructuring and environmental governance has become a popular research direction. As an important part of electrocatalytic reactions for gas molecules, reduction reactions of oxygen (ORR) and carbon dioxide (CO2RR) are very indispensable in the field of energy conversion and storage. However, the non-interchangeability and irreversibility of electrode materials have always been a challenge in electrocatalysis. Hereon, nickel and nitrogen decorated biomass carbon-based materials (Ni/N-BC) has been prepared by high temperature pyrolysis using agricultural waste straw as raw material. Surprisingly, it possesses abundant active sites and specific surface area as a bifunctional electrocatalyst for ORR and CO2RR. The three-dimensional porous cavity structure for the framework of biomass could not only provide a strong anchoring foundation for the active site, but also facilitate the transport and enrichment of reactants around the site. In addition, temperature modulation during the preparation process also optimizes the composition and structure of biomass carbon and nitrogen. Benefit from above structure and morphology advantages, Ni/N-BC-800 exhibits the superior electrocatalytic activity for both ORR and CO2RR simultaneously. More specifically, Ni/N-BC-800 exhibits satisfactory ORR activity in terms of initial potential and half wave potential, while also enables the production of CO under high selective. The research results provide ideas for the development and design of electrode materials and green electrocatalysts, and also expand new applications of agricultural waste in fields such as energy conversion, environmental protection, and resource utilization.
Collapse
Affiliation(s)
- Junjie Yuan
- School of Agricultural Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Jiayi Zou
- School of Agricultural Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Zhongqiu Wu
- School of Agricultural Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Zhaolong Wang
- School of Agricultural Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Zongli Yang
- School of Agricultural Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Hui Xu
- School of Agricultural Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| |
Collapse
|
3
|
Wang W, Ning H, Fei X, Wang X, Ma Z, Jiao Z, Wang Y, Tsubaki N, Wu M. Trace Ionic Liquid-Assisted Orientational Growth of Cu 2 O (110) Facets Promote CO 2 Electroreduction to C 2 Products. CHEMSUSCHEM 2023; 16:e202300418. [PMID: 37096401 DOI: 10.1002/cssc.202300418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Cu2 O has great advantages for CO2 electroreduction to C2 products, of which the activity and selectivity are closely related to its crystal facets. In this work, density functional theory calculation indicated that the (110) facets of Cu2 O had a lower energy barrier for the C-C coupling compared to the (100) and (111) facets. Therefore, Cu2 O(110) facets were successfully synthesized with the assistance of trace amounts of the ionic liquid 1-butyl-3-methylimidazolium ([Bmim]BF4 ) by a sample wet-chemical method. A high faradaic efficiency of 71.1 % and a large current density of 265.1 mA cm-2 toward C2 H4 and C2 H5 OH were achieved at -1.1 V (vs. reversible hydrogen electrode) in a flow cell. The in situ and electrochemical analysis indicated that it possessed the synergy effects of strong adsorption of *CO2 and *CO, large active area, and excellent conductivity. This study provided a new way to enhance the C2 selectivity of CO2 electroreduction on Cu2 O by crystal structure engineering.
Collapse
Affiliation(s)
- Wenhang Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao, 266580, P. R. China
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Hui Ning
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao, 266580, P. R. China
| | - Xiang Fei
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao, 266580, P. R. China
| | - Xiaoshan Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao, 266580, P. R. China
| | - Zhengguang Ma
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao, 266580, P. R. China
| | - Zhenmei Jiao
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao, 266580, P. R. China
| | - Yani Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao, 266580, P. R. China
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao, 266580, P. R. China
| |
Collapse
|