1
|
Hu J, Gao H, Wang X, Tan B. High-Capacity Volumetric Methane Storage in Hyper-Cross-Linked Porous Polymers via Flexibility Engineering of Building Units. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418005. [PMID: 40072300 DOI: 10.1002/adma.202418005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/14/2025] [Indexed: 04/24/2025]
Abstract
Adsorbed natural gas (ANG) storage is emerging as a promising alternative to traditional compressed and liquefied storage methods. However, its onboard application is restricted by low volumetric methane storage capacity. Flexible porous adsorbents offer a potential solution, as their dense structures and unique gate-opening effects are well-suited to enhance volumetric capacity under high pressures. This study developes a series of hyper-cross-linked polymers (HCPs) with tunable flexibility by modifying the aliphatic chain length in double-benzene-ring building blocks, employing a cost-effective external crosslinking approach. The resulting flexible polymer, HCP-DPP, exhibits pore expansion under specific methane pressures, producing a high-pressure adsorption isotherm with gate-opening behavior. Combined with its intrinsic dense skeleton, this feature leads to superior volumetric methane storage performance over rigid counterparts. Notably, HCP-DPP achieves a record-high volumetric total uptake of 333 cm3 STP cm-3 and a working capacity of 291 cm3 STP cm-3 at 273 K and 100 bar, exceeding the U.S. Department of Energy (DOE) target of 263 cm3 STP cm-3. These findings lay a foundation for developing advanced flexible porous adsorbents for practical ANG applications.
Collapse
Affiliation(s)
- Jiarui Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Gao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoyan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
2
|
Koupepidou K, Subanbekova A, Zaworotko MJ. Functional flexible adsorbents and their potential utility. Chem Commun (Camb) 2025; 61:3109-3126. [PMID: 39851002 PMCID: PMC11841667 DOI: 10.1039/d4cc05393a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/09/2025] [Indexed: 01/25/2025]
Abstract
Physisorbents are poised to address global challenges such as CO2 capture, mitigation of water scarcity and energy-efficient commodity gas storage and separation. Rigid physisorbents, i.e. those adsorbents that retain their structures upon gas or vapour exposure, are well studied in this context. Conversely, cooperatively flexible physisorbents undergo long-range structural transformations stimulated by guest exposure. Discovered serendipitously, flexible adsorbents have generally been regarded as scientific curiosities, which has contributed to misconceptions about their potential utility. Recently, increased scientific interest and insight into the properties of flexible adsorbents has afforded materials whose performance suggests that flexible adsorbents can compete with rigid adsorbents for both storage and separation applications. With respect to gas storage, adsorbents that undergo guest-induced phase transformations between low and high porosity phases in the right pressure range can offer improved working capacity and heat management, as exemplified by studies on adsorbed natural gas storage. For gas and vapour separations, the very nature of flexible adsorbents means that they can undergo induced fit mechanisms of guest binding, i.e. the adsorbent can adapt to a specific adsorbate. Such flexible adsorbents have set several new benchmarks for certain hydrocarbon separations in terms of selectivity and separation performance. This Feature Article reviews progress made by us and others towards the crystal engineering (design and control) of flexible adsorbents and addresses several of the myths that have emerged since their initial discovery, particularly with respect to those performance parameters of relevance to natural gas storage, water harvesting and hydrocarbon gas/vapour separation.
Collapse
Affiliation(s)
- Kyriaki Koupepidou
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94T9PX, Republic of Ireland.
| | - Aizhamal Subanbekova
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94T9PX, Republic of Ireland.
| | - Michael J Zaworotko
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94T9PX, Republic of Ireland.
| |
Collapse
|
3
|
Senkovska I, Bon V, Mosberger A, Wang Y, Kaskel S. Adsorption and Separation by Flexible MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414724. [PMID: 39871766 DOI: 10.1002/adma.202414724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/28/2024] [Indexed: 01/29/2025]
Abstract
Flexible metal-organic frameworks (MOFs) offer unique opportunities due to their dynamic structural adaptability. This review explores the impact of flexibility on gas adsorption, highlighting key concepts for gas storage and separation. Specific examples demonstrate the principal effectiveness of flexible frameworks in enhancing gas uptake and working capacity. Additionally, mixed gas adsorption and separation of mixtures are reviewed, showcasing their potential in selective gas separation. The review also discusses the critical role of the single gas isotherms analysis and adsorption conditions in designing separation experiments. Advanced combined characterization techniques are crucial for understanding the behavior of flexible MOFs, including monitoring of phase transitions, framework-guest and guest-guest interactions. Key challenges in the practical application of flexible adsorbents are addressed, such as the kinetics of switching, volume change, and potential crystal damage during phase transitions. Furthermore, the effects of additives and shaping on flexibility and the "slipping off effect" are discussed. Finally, the benefits of phase transitions beyond improved working capacity and selectivity are outlined, with a particular focus on the advantages of intrinsic thermal management. This review highlights the potential and challenges of using flexible MOFs in gas storage and separation technologies, offering insights for future research and application.
Collapse
Affiliation(s)
- Irena Senkovska
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Volodymyr Bon
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Antonia Mosberger
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Yutong Wang
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| |
Collapse
|
4
|
Li X, Sensharma D, Loots L, Geng S, Nikkhah SJ, Lin E, Bon V, Liu W, Wang Z, He T, Mukherjee S, Vandichel M, Kaskel S, Barbour LJ, Zhang Z, Zaworotko MJ. Reversible Phase Transformations in a Double-Walled Diamondoid Coordination Network with a Stepped Isotherm for Methane. J Am Chem Soc 2024; 146:18387-18395. [PMID: 38904843 PMCID: PMC11240251 DOI: 10.1021/jacs.4c03555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Flexible metal-organic materials (FMOMs) with stepped isotherms can offer enhanced working capacity in storage applications such as adsorbed natural gas (ANG) storage. Unfortunately, whereas >1000 FMOMs are known, only a handful exhibit methane uptake of >150 cm3/cm3 at 65 atm and 298 K, conditions relevant to ANG. Here, we report a double-walled 2-fold interpenetrated diamondoid (dia) network, X-dia-6-Ni, [Ni2L4(μ-H2O)]n, comprising a new azo linker ligand, L- (L- = (E)-3-(pyridin-4-yldiazenyl)benzoate) and 8-connected dinuclear molecular building blocks. X-dia-6-Ni exhibited gas (CO2, N2, CH4) and liquid (C8 hydrocarbons)-induced reversible transformations between its activated narrow-pore β phase and γ, a large-pore phase with ca. 33% increase in unit cell volume. Single-crystal X-ray diffraction (SCXRD) studies of the as-synthesized phase α, β, and γ revealed that structural transformations were enabled by twisting of the azo moiety and/or deformation of the MBB. Further insight into these transformations was gained from variable temperature powder XRD and in situ variable pressure powder XRD. Low-temperature N2 and CO2 sorption revealed stepped Type F-II isotherms with saturation uptakes of 422 and 401 cm3/g, respectively. X-dia-6-Ni exhibited uptake of 200 cm3/cm3 (65 atm, 298 K) and a high CH4 working capacity of 166 cm3/cm3 (5-65 bar, 298 K, 33 cycles), the third highest value yet reported for an FMOM and the highest value for an FMOM with a Type F-II isotherm.
Collapse
Affiliation(s)
- Xia Li
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Debobroto Sensharma
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Leigh Loots
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland 7602, South Africa
| | - Shubo Geng
- College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Sousa Javan Nikkhah
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - En Lin
- College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Volodymyr Bon
- Faculty of Chemistry, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Wansheng Liu
- College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhifang Wang
- College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Tao He
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Soumya Mukherjee
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Matthias Vandichel
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Stefan Kaskel
- Faculty of Chemistry, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Leonard J Barbour
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland 7602, South Africa
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Michael J Zaworotko
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| |
Collapse
|
5
|
Wang SM, Shivanna M, Zheng ST, Pham T, Forrest KA, Yang QY, Guan Q, Space B, Kitagawa S, Zaworotko MJ. Ethane/Ethylene Separations in Flexible Diamondoid Coordination Networks via an Ethane-Induced Gate-Opening Mechanism. J Am Chem Soc 2024; 146:4153-4161. [PMID: 38300827 DOI: 10.1021/jacs.3c13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Separating ethane (C2H6) from ethylene (C2H4) is an essential and energy-intensive process in the chemical industry. Here, we report two flexible diamondoid coordination networks, X-dia-1-Ni and X-dia-1-Ni0.89Co0.11, that exhibit gate-opening between narrow-pore (NP) and large-pore (LP) phases for C2H6, but not for C2H4. X-dia-1-Ni0.89Co0.11 thereby exhibited a type F-IV isotherm at 273 K with no C2H6 uptake and a high uptake (111 cm3 g-1, 1 atm) for the NP and LP phases, respectively. Conversely, the LP phase exhibited a low uptake of C2H4 (12.2 cm3 g-1). This C2H6/C2H4 uptake ratio of 9.1 for X-dia-1-Ni0.89Co0.11 far surpassed those of previously reported physisorbents, many of which are C2H4-selective. In situ variable-pressure X-ray diffraction and modeling studies provided insight into the abrupt C2H6-induced structural NP to LP transformation. The promise of pure gas isotherms and, more generally, flexible coordination networks for gas separations was validated by dynamic breakthrough studies, which afforded high-purity (99.9%) C2H4 in one step.
Collapse
Affiliation(s)
- Shao-Min Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mohana Shivanna
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Su-Tao Zheng
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tony Pham
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Katherine A Forrest
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qingqing Guan
- Key Laboratory of Oil and Gas Fine Chemicals of Ministry of Education, College of Chemical Engineering, Xinjiang University, Urumqi 830017, China
| | - Brian Space
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Michael J Zaworotko
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| |
Collapse
|
6
|
Nikolayenko VI, Castell DC, Sensharma D, Shivanna M, Loots L, Otake KI, Kitagawa S, Barbour LJ, Zaworotko MJ. Metal cation substitution can tune CO 2, H 2O and CH 4 switching pressure in transiently porous coordination networks. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:16019-16026. [PMID: 38013758 PMCID: PMC10394667 DOI: 10.1039/d3ta03300g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/17/2023] [Indexed: 11/29/2023]
Abstract
Compared to rigid physisorbents, switching coordination networks that reversibly transform between closed (non-porous) and open (porous) phases offer promise for gas/vapour storage and separation owing to their improved working capacity and desirable thermal management properties. We recently introduced a coordination network, X-dmp-1-Co, which exhibits switching enabled by transient porosity. The resulting "open" phases are generated at threshold pressures even though they are conventionally non-porous. Herein, we report that X-dmp-1-Co is the parent member of a family of transiently porous coordination networks [X-dmp-1-M] (M = Co, Zn and Cd) and that each exhibits transient porosity but switching events occur at different threshold pressures for CO2 (0.8, 2.1 and 15 mbar, for Co, Zn and Cd, respectively, at 195 K), H2O (10, 70 and 75% RH, for Co, Zn and Cd, respectively, at 300 K) and CH4 (<2, 10 and 25 bar, for Co, Zn and Cd, respectively, at 298 K). Insight into the phase changes is provided through in situ SCXRD and in situ PXRD. We attribute the tuning of gate-opening pressure to differences and changes in the metal coordination spheres and how they impact dpt ligand rotation. X-dmp-1-Zn and X-dmp-1-Cd join a small number of coordination networks (<10) that exhibit reversible switching for CH4 between 5 and 35 bar, a key requirement for adsorbed natural gas storage.
Collapse
Affiliation(s)
- Varvara I Nikolayenko
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94T9PX Republic of Ireland
| | - Dominic C Castell
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94T9PX Republic of Ireland
| | - Debobroto Sensharma
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94T9PX Republic of Ireland
| | - Mohana Shivanna
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University (KUIAS) Yoshida Ushinomiyacho, Sakyoku Kyoto 606-8501 Japan
| | - Leigh Loots
- Department of Chemistry and Polymer Science, University of Stellenbosch Matieland 7600 South Africa
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University (KUIAS) Yoshida Ushinomiyacho, Sakyoku Kyoto 606-8501 Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University (KUIAS) Yoshida Ushinomiyacho, Sakyoku Kyoto 606-8501 Japan
| | - Leonard J Barbour
- Department of Chemistry and Polymer Science, University of Stellenbosch Matieland 7600 South Africa
| | - Michael J Zaworotko
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94T9PX Republic of Ireland
| |
Collapse
|